WITT'S CANCELLATION THEOREM IN VALUATION RINGS

PAUL J. MCCARTHY

Let \(K \) be a field with an exponential valuation \(V \). The set of all \(a \in K \) such that \(V(a) \geq 0 \) forms a ring \(R \). The set of all \(a \in R \) such that \(V(a) > 0 \) forms a prime ideal in \(R \). This ideal consists of precisely the nonunits of \(R \). \(R \) is called the valuation ring of \(K \) with respect to \(V \).

If \(A \) and \(B \) are symmetric matrices over \(R \), we say that \(A \) and \(B \) are congruent, and write \(A \cong B \), if there is a unimodular matrix \(T \) over \(R \) such that \(TAT = B \). \(T \) is unimodular if it has an inverse over \(R \), i.e., if \(|T| \) is a unit in \(R \). If \(A_1 \) and \(A_2 \) are square matrices, we write \(A_1 + A_2 \) for the matrix

\[
\begin{bmatrix}
A_1 & 0 \\
0 & A_2
\end{bmatrix}.
\]

If \(a \) is an element of \(R \) and \(A \) is a square matrix, \(aA \) will have the obvious meaning.

In this paper we prove the following result.

Theorem. Assume that 2 is a unit in \(R \). If \(A \), \(B \), and \(C \) are non-singular symmetric matrices over \(R \), and if \(A + B \cong A + C \), then \(B \cong C \).

This theorem was first proved by E. Witt [5] for matrices over a field of characteristic not equal to 2. It was subsequently proved by B. W. Jones [2] for matrices over the ring of \(p \)-adic integers (\(p \) odd), by G. Pall [4] for Hermitian matrices over a skewfield of characteristic not equal to 2, and by W. H. Durfee [1] for matrices over a complete valuation ring with 2 a unit. Moreover, Durfee gave examples to show that the theorem is not true when 2 is a nonunit. We have not only eliminated the requirement that \(R \) be complete, but we give a proof which is considerably shorter than the proof of the corresponding theorem given by Durfee. The theorem is an immediate consequence of the following two lemmas.

Lemma 1. Assume that 2 is a unit in \(R \). If \(A \) is any \(n \times n \) symmetric matrix over \(R \), there are elements \(a_1, a_2, \ldots, a_n \) in \(R \) such that \(A \cong a_1 + a_2 + \cdots + a_n \).

Lemma 2. Assume that 2 is a unit in \(R \). If \(B \) and \(C \) are nonsingular
symmetric matrices over R, if a is an element of R, and if $a+B \cong a+C$, then $B \cong C$.

The first of these lemmas is proved in precisely the same manner as the first part of Theorem 1 of [1].

The proof of the second lemma is similar to the proof of Theorem 8 of [3]. Let

$$T = \begin{bmatrix} t_0 & t_1 \\ t_2 & T_0 \end{bmatrix}$$

be a unimodular matrix such that $T^r(a+B)T = a+C$, where t_0 is an element of R and t_1, t_2, and T_0 are of the appropriate dimensions. Then

$$t_0 a + t_2 B t_2 = a,$$

$$t_0 a t_1 + t_2 B T_0 = 0,$$

$$t_1 a t_1 + T_0^r B T_0 = C.$$

We can choose the correct sign in $t_0 \pm 1$ so that the resulting element, u, of R is a unit. For, if $t_0 + 1$ and $t_0 - 1$ are both nonunits, then $(t_0 + 1) - (t_0 - 1) = 2$ is a nonunit.

If we now set $S = T_0 - t_2 u^{-1}$, we can use (1) to show that $S^r B S = C$. Since $T^r T = a C$, and T^r is a unit, we have $V(B) = V(C)$. Hence $V(S^r) = 0$, so S^r and therefore S is a unit in R. Thus S is unimodular, and this completes the proof of Lemma 2 and the theorem.

References

University of Notre Dame