ON SEMI-GROUPS OF UNBOUNDED NORMAL OPERATORS

R. K. GETOOR

In this note we discuss the integral representation of a semi-group of unbounded normal operators. The result for a semi-group of bounded normal operators can be found in Sz. Nagy [4]. Recently A. Devinatz [1] obtained a similar result for semi-groups of unbounded self-adjoint operators. The following theorem is proved.

Theorem. Let \(\{N_t; t>0\} \) be a semi-group (i.e., \(N_t N_s = N_{t+s} \)) of normal operators on a Hilbert space \(\mathcal{H} \). Let \(D_t \) be the domain of \(N_t \) (each \(D_t \) dense in \(\mathcal{H} \)) and let \(D = \bigcap_{t>0} D_t \) then we suppose that \(N_t x \) is weakly continuous as a function of \(t (t>0) \) for each fixed \(x \in D \). Then there exists a unique complex spectral resolution \(K(\lambda) \) whose support is contained in \(\lambda_1 \geq 0, \lambda = \lambda_1 + i\lambda_2, \) such that

\[
N_t = \int_{\lambda_1 \geq 0} \lambda_1 e^{i\lambda_2 t} K(d\lambda), \quad t > 0.
\]

Proof. First recall that if \(N \) is a normal operator then \(N = AU = UA \) where \(U \) is unitary and \(A \) is self-adjoint and has the same domain as \(N \). In fact if \(K(\lambda) \) is the spectral resolution of \(N \) then we can define \(A \) and \(U \) as follows,

\[
(2) \quad A = \int |\lambda| K(d\lambda),
\]

\[
(3) \quad U = \int s(\lambda) K(d\lambda) \text{ where } s(\lambda) = \begin{cases} \lambda/|\lambda|, & \lambda \neq 0, \\ 1, & \lambda = 0. \end{cases}
\]

Let us also note that if \(p \) is an integer then \((N^*)^p = (A^p U^*)^* = A^p U^{-p} \) and that \((N^*)^p = (A U^*)^p = A^p U^{-p} \), hence \((N^*)^p = (N^*)^p \).

We now prove a series of simple statements which taken together yield our theorem.

(a) If \(t \) and \(s \) are commensurable then \(N_t N_s^* = N_s^* N_t \). This is a trivial consequence of the semi-group property of \(\{N_t, t>0\} \) and the fact that \((N_t^*)^n = (N_t^*)^n \).

Presented to the Society, December 27, 1954; received by the editors June 3, 1955.

\(^1\) This research was supported in part by the Office of Ordnance Research contract DA-36-034-ORD-1296RD.

387
(b) If $x \in D$ then $N_t N^*_s x = N^*_s N_t x$ for all $t, s > 0$. First if $x \in D$ then $N_t x \in D$ and $N^*_s x \in D$ for all $t > 0$, since if $x \in D$ then $N_{t+s} x$ exists and $N_s N_t x = N_{t+s} x$. Thus $N_t x \in D_s$ for all s and hence is in D. To show $N^*_t x \in D$, let $t_0 > 0$ be fixed, then $N_t x \in D$ for all $s > 0$ as seen above, hence $N^*_t N_x x$ exists. (Domain of N^*_t is D_t since N_t is normal.) Let $s = nt_0$, $n = 1, 2, \ldots$, then since s and t_0 are commensurable $N^*_t N_s x = N_s (N^*_t x)$ or $N^*_t x \in D_{nt_0}$ for $n = 1, 2, \ldots$. But by the semi-group property of N_t, $t > 0$, the D_t's are a decreasing collection of sets and therefore $D = \cap_{t > 0} D_t = \lim_{t \to \infty} D_t = \lim_{n \to \infty} D_{nt_0}$ since $t_0 > 0$. Thus $N^*_t x \in D$.

If t, s are given and $x \in D$ then $N_t N^*_s x$ and $N^*_s N_t x$ both exist. Let $t_n \to t$, t_n and s commensurable. A standard argument making use of the continuity property of $\{N_t, t > 0\}$ shows that for a fixed $x \in D$ $(N^*_s N_t x, y) = (N_t N^*_s x, y)$ for all $y \in D_s$, but D_s is dense in \mathfrak{X} and hence $N^*_s N_t x = N_t N^*_s x$.

(c) If we define $A_t = N^*_t N_{t/2}$, $t > 0$, then $\{A_t, t > 0\}$ is a semi-group of self-adjoint operators such that

$$A_t = A^*_t = \int_0^\infty \lambda dE(\lambda),$$

$t > 0$.

It is clear from the definition that each A_t is a positive self-adjoint operator and moreover $A_t^2 = N^*_t N_t$. Since a positive self-adjoint operator has a unique positive self-adjoint square root it follows that A_t is the operator defined by (2) for N_t. Thus $D_{A_t} = D_t$ and $D = \cap_{t > 0} D_{A_t}$.

If $x \in D$ then $A_t A_s x = N^*_t N^*_s N_{t/2} N_{s/2} x$ and this is defined since $N_t D \subseteq D$ and $N^*_s D \subseteq D$ for all $t > 0$. Moreover by (b)

$$A_t A_s x = N^*_t N^*_s N_{t/2} N_{s/2} x = N^*_s N_{(t+s)/2} x = A_{t+s} x,$$

since in general $N^*_{(t+s)/2} \supseteq N^*_t N^*_s$. Also

$$A_t A_s x = N^*_s N^*_t N_{t/2} N_{s/2} x = N^*_s N_{s/2} N^*_t N_{t/2} x = A_s A_t x.$$

Consequently if $x \in D$, $A_t A_s x = A_s A_t x = A_{t+s} x$. Now the same argument as used by Sz. Nagy [4, p. 74] shows that $(A_s x, x)$ for each fixed $x \in D$ is bounded above as a function of t in every interval $0 < a \leq t \leq b$. This implies, Sz. Nagy [4, p. 73], that $(A_s x, x)$ is continuous for $t > 0$ and $x \in D$. We would like to apply Devinatz' theorem at this point to the A_t's but we do not know a priori that the A_t's form a semi-group. The following argument is almost word for word that of Devinatz [1, p. 102]. Define $H_t = A^*_t$. Clearly $\{H_t, t > 0\}$
is a semi-group. In addition using (a) we see that $H_n = A_1^n = (N_{1/2}^n N_{1/2})^n = N_{n/2}^n N_{n/2} = A_n$. Furthermore the uniqueness of square roots of positive self-adjoint operators implies that for any integers $n, m, H_{n/2}^m = A_{n/2}^m$. Now, there exists a countable set of mutually orthogonal manifolds $\{M_k\}$, whose direct sum is the whole space and such that, for all $t > 0$, $H_t = \sum_{k=1}^n \oplus H_t^{(k)}$, where $H_t^{(k)}$ is a bounded self-adjoint operator on M_k and is the restriction of H_t to M_k (Sz. Nagy [4, p. 49]). That is, $x \in D_n$ if and only if $\sum_{k=1}^n \|H_t^{(k)}x_k\|^2 < \infty$, where $x_k \in M_k$, and $x = \sum_{k=1}^n x_k$. Then $H_x = \sum_{k=1}^n H_t^{(k)}x_k$.

Given any $t > 0$ there exists an $m/2^n \geq t$. From the semi-group property of $\{N_t, t > 0\}$ we know that $D_{m/2^n} \subset D_t$ (D_t is also the domain of A_t). Thus for every $x_k \in M_k$, $x_k \in D_{m/2^n} \subset D_t$. Consequently, since $H_m = H_m^n$ and by the continuity of $(A_t x_k, x_k)$ and $(H_t x_k, x_k)$ as functions of t, we must have $A_t x_k = H_t^{(k)} x_k = H_t x_k$. This implies that $H_t = A_t$ (Sz. Nagy [4, p. 35]), and hence (4) is proved.

For any $t > 0$ the above argument shows that $M_k \subset D_t$ for $k = 1, 2, \cdots$, and hence $M_k \subset D$ for all k. Thus if $x \in \mathcal{E}$ and $x = \sum_{k=1}^n x_k$ then $y_n = \sum_{k=1}^n x_k$ is in D and $y_n \to x$. That is D is dense in \mathcal{E}. Moreover for any $t > 0$ if $x \in D_t$ then $A_t y_n = \sum_{k=1}^n A_t x_k = \sum_{k=1}^n H_t^{(k)} x_k = H_t x$. Thus for any $x \in D_t$ there exists a sequence $y_n \in D$ such that $y_n \to x$ and $A_t y_n \to A_t x$.

For each $t > 0$ let U_t be the unitary operator defined by (3) such that $N_t = A_t U_t = U_t A_t$. From (2) and (4) it follows that A_t and N_t have the same null space, \mathfrak{N}, for all $t, s > 0$. \mathfrak{N} is a closed linear manifold since the operators in question are closed. If we write $\mathfrak{H} = \mathfrak{N} \oplus \mathfrak{N}$ where \mathfrak{N} is the orthogonal complement of \mathfrak{N}, then \mathfrak{N} can be characterized as either the closure of R_{A_t} or the closure of R_{N_t} for any $t > 0$. (If T is an operator R_T denotes the range of T.) Thus \mathfrak{N} is the null space of A_t, N_t, and N_t^* for all $t > 0$ and if we write (3) with the proper subscript we see that \mathfrak{N} is also the null space of U_t for all $t > 0$. (Note that $K_t(\{0\})$ is the projection on \mathfrak{N}.) It is now clear that all of the above operators are reduced by \mathfrak{N}. (A normal operator is always reduced by its null space.) Thus we can restrict all the operators in question to \mathfrak{N}. We assume $\mathfrak{N} \neq \{0\}$ since in this case everything is trivial.

(d) If $\bar{D} = D \cap \mathfrak{N}$ then \bar{D} is dense in \mathfrak{N}. Assume \bar{D} not dense in \mathfrak{N} then there exists $r \in \mathfrak{N}, r \neq 0$, such that $r \perp \bar{D}$. Let $x \in D$, then $x = x_k + n$, $x_k \in \mathfrak{N}, n \in \mathfrak{N}$. Since $n \in D$ and D is linear we see that $x_k = x - n \in D$ and hence in \bar{D}. Therefore $(r, x) = (r, x_k) + (r, n) = 0$ which implies that $r = 0$ as an element of \mathfrak{N} since D is dense in \mathfrak{N}. But this contradicts the fact that $r \neq 0$ as an element of \mathfrak{N}.

(e) In this section all operators are considered as operators on \mathfrak{N}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
If we define $U_0 = I$ and $U_{-t} = U_t^{-1}$ then \{ $U_t; -\infty < t < \infty$ \} is a strongly continuous group of unitary operators on \mathfrak{A}.

First we show that $A_t U_t x = U_t A_t x$ for $x \in \mathfrak{B}$. Note that $x \in \mathfrak{B}$ implies $A_t x \in \mathfrak{B}$ by the same argument as that used in (b), and also that (b) and the definition of A_t implies $A_t N_t x = N_t A_t x$ for all $x \in \mathfrak{B}$. Thus for all $x \in \mathfrak{B}$ we have

$$A_t N_t x = N_t A_t x, \quad A_t A_s U_t x = A_s U_t A_t x.$$

However, the semi-group property of \{ $A_t, t > 0$ \} implies $A_t A_s = A_s A_t$, hence

$$A_s A_t U_t x = A_t A_s U_t x$$

and from this we conclude that $A_t U_t x = U_t A_t x$ since $A_t x$ is one-to-one in \mathfrak{A}, i.e., A_t^{-1} exists. A consequence of this is that $U_t x \in \mathfrak{B}$ if $x \in \mathfrak{B}$. Therefore for $x \in \mathfrak{B}$, $N_t N_t x = N_{t+t} x = A_{t+t} U_{t+t} x = A_t A_s U_t U_s x$ or $U_{t+t} x = A_{t+t} A_{t+t} U_t U_s x = U_{t+t} A_t U_t x$. But the U_t's are bounded and \mathfrak{B} is dense in \mathfrak{A} thus $U_t U_s = U_{t+s} = U_{t+s}$, and if we define $U_0 = I$ and $U_{-t} = U_t^*$ it is clear that \{ $U_t; -\infty < t < \infty$ \} is a group of unitary operators on \mathfrak{A}.

We now investigate the continuity properties of this group. To this end we first note that an immediate consequence of (4) is that A_t is strongly continuous on \mathfrak{B} even at $t = 0$, and that $A_t x$ is strongly left continuous at $t = t_0$ for $x \in \mathfrak{B}$, $t_0 = D = D_0 \cap \partial T$ (if $s \leq t$, then $D_t \subset D_s$ and hence $D_t \subset D_s$). Suppose $t_0 > 0$ and $t_n \uparrow t_0$, $0 < t_n < t_0$, then $D_t \subset D_{t_n}$. Let $x \in R_{t_0}$, $y \in \mathfrak{B}$ then $x = A_t z$ where $z \in D_{t_0} \subset D_s$. Thus we have

$$| (U_{t_n} x_0, y) - (U_{t_0} x_0, y) | = | (U_{t_0} A_{t_0} z, y) - (U_{t_0} A_{t_0} z, y) | \leq | (U_{t_0} - A_{t_0}) z, y | + | (U_{t_0} A_{t_0} - U_{t_0} A_{t_0}) z, y | \leq \| (A_t - A_{t_0}) z \| \| y \| + \| (A_t - A_{t_0}) z \| \| y \| + \| (z, N_{t_0} y) - (z, N_{t_0} y) | \rightarrow 0 \text{ as } t_n \uparrow t_0.$$

Since R_{t_0} and \mathfrak{B} are dense in \mathfrak{A} and $\| U_t \| = 1$ it follows that \{ $U_t, t < 0$ \} is weakly right continuous. However, weak right continuity at any one point t_0 implies weak right continuity for all t since $([U_{t+h} - U_t] x, y) = ([U_{t+h} - U_t] x, U_{t+h} - U_t y)$. A minor modification in the proof of Theorem 9.2.2 in Hille [3] shows that U_t is strongly continuous for all t. This completes the proof of (e).

From (3) we see that U_t is the identity on \mathfrak{N} and thus \{ $U_t; -\infty < t < \infty$ \} is a strongly continuous group of unitary operators on all of \mathfrak{N}. (We no longer restrict the operators in question to \mathfrak{A}.) The spectral theorem for unitary groups guarantees the existence.
of unique spectral resolution $F(\lambda_2)$ such that

$$U_t = \int_{-\infty}^{\infty} e^{it\lambda} dF(\lambda), \quad -\infty < t < \infty.$$

In (e) we saw that $A_tU_t x = U_t A_t x$ for all $x \in D$. But for any $x \in D$ we have $x = n_t + r$ where $n \in \mathfrak{N}$ and $r \in D$, hence $A_t U_t x = U_t A_t x$ for all $x \in D$ since \mathfrak{N} is the common null space of these operators. For any $x \in D_1$ there exists $y_n \in D$ such that $y_n \to x$ and $A_1 y_n \to A_1 x$. See (c).

Hence

$$U_t A_1 x = U_t \left[\lim_{n \to \infty} A_1 y_n \right] = \lim_{n \to \infty} U_t A_1 y_n = \lim_{n \to \infty} A_1 U_t y_n.$$

Moreover $U_t y_n \to U_t x$ and since A_1 is closed we have $U_t A_1 x = A_1 U_t x$. Thus $U_t A_1 \subset A_1 U_t$ for $-\infty < t < \infty$. Therefore by Fuglede's theorem [2] we obtain $E(\lambda_t) U_t = U_t E(\lambda_t)$ for all t and λ_t and then finally that $E(\lambda_t) F(\lambda_2) = F(\lambda_2) E(\lambda_t)$ for λ_1 and λ_2.

Putting $K(d\lambda) = E(d\lambda_1) F(d\lambda_2)$ we have

$$N_t = A_1 U_t = \int_{\lambda_t \in \mathfrak{N}} \int_{\lambda_1 \geq 2} \lambda_1^t d\lambda_1 d\lambda_2 K(d\lambda), \quad t > 0.$$

Clearly $K(A)$ is unique on \mathfrak{N} but since $\mathfrak{N} = K(\{0\}) \mathfrak{C}$ it follows that $K(A)$ is unique on all of \mathfrak{C}.

The author would like to thank the referee for several helpful suggestions which simplified the statement of the theorem.

References

Princeton University