A SPACE OF SUBSETS HAVING THE FIXED POINT PROPERTY

C. E. CAPEL AND W. L. STROTHER

In 1939 Wojdyslawski [6] asked whether the property of being a CAR* (=retract of a Tychonoff cube) is preserved from a space X to the space $S(X)$ of non-null closed subsets of X. This has been answered affirmatively for a special case only, namely, when X is a Peano space. Whether the fixed point property is preserved from X to $S(X)$ is also unknown. Both properties fail to be preserved in the opposite direction [4, Corollary 1 and Corollary 10].

The object of this paper is to prove that if X is a CAR* then $S(X)$ has the fixed point property. First it will be shown that if T is a Tychonoff cube then $S(T)$ has the fixed point property. If the space X is a CAR* it is a retract of some cube T and hence [4] $S(X)$ is a retract of $S(T)$. Thus the fixed point property in $S(X)$ follows from that in $S(T)$.

The following notation will be used. If Y is a space then $S(Y)$ denotes the set of non-null closed subsets of Y with the usual topology [5, p. 281]. For each element a in a set A let I_a be the unit interval; then the cartesian product

$$T = \prod \{I_a: a \in A\}$$

is a Tychonoff cube. Let $\mathfrak{A} = \{B: B$ is a finite, non-null subset of $A\}$; then for each B in \mathfrak{A} let

$$T_B = \prod \{I_a: a \in B\}.$$

The projection functions are given by $\pi_a: T \to I_a$ and $\pi_B: T \to T_B$.

The proof of the theorem depends upon a collection of subsets of $S(T)$ defined, for S in \mathfrak{A}, by $S(T, B) = S(T_B) \times P\{S(I_a): a \in B\}$. The function $r_B: S(T) \to S(T, B)$, defined by $r_B(E) = \pi_B(E) \times P\{\pi_a(E): a \in B\}$, is a retraction of $S(T)$ onto $S(T, B)$ [1, p. 68].

The fact that the system (\mathfrak{B}, \subset) is a directed set is used in the following lemma. For details on nets see [2].

Lemma. If \mathfrak{C} is a cofinal subset of \mathfrak{A} and $\{E_C\}$ is a net in $S(T)$ on \mathfrak{C} then $\lim_{\mathfrak{C}} \{E_C\} = E$ implies $\lim_{\mathfrak{C}} \{r_C(E_C)\} = E$.

Proof. Let $N(W; V)$ be a subbasic element of the topology of $S(T)$ such that $E \subseteq N(W; V)$. It is sufficient to show that the net $\{r_C(E_C)\}$ is eventually in $N(W; V)$. Now E being in $N(W; V)$ means that $E \subseteq W$ and $E \cap V \neq 0$ where W and V are open subsets of T.

1 This research was supported by the United States Air Force, through the Office of Scientific Research of the Air Research and Development Command.

Presented to the Society, September 2, 1955 under the title Fixed point property for the space of subsets of an absolute retract; received by the editors August 9, 1955.
Since E is compact we may assume $W = \bigcup \{ W_i : i = 1, \ldots, n \}$, a finite union of basis elements of the form $W_i = \bigcup \{ U_a : a \in B_i \} \times \bigcup \{ I_a : a \in B_i \}$ where U_a is an open subset of I_a. Let $B_0 = \bigcup \{ B_i : i = 1, \ldots, n \}$.

If $\lim E_i = E$ then there is C_1 in \mathcal{C} such that $E_C \subseteq N(W; V)$ whenever C contains C_1. Let C_2 be in \mathcal{C} such that $C_1 \subseteq C_2$ and $B_0 \subseteq C_2$.

Let C be any element of \mathcal{C} which contains C_2. If $x \in r_C(E_C)$ then there is $y \in E_C$ such that $\pi_C(x) = \pi_C(y)$. Now $y \in E_C \subseteq W$ and therefore for some i, $y \in W_i$. Since $B_0 \subseteq C_2$, it follows that $x \in W_i$ and hence $r_C(E_C) \subseteq W$. Note that $E_C \subseteq r_C(E_C)$ so that $E_C \cap V \neq \emptyset$ implies $r_C(E_C) \cap V \neq \emptyset$. This means that $r_C(E_C) \subseteq N(W; V)$ whenever C contains C_2, which completes the proof.

Theorem. The space $S(T)$ has the fixed point property.

Proof. It is known [3, p. 117] that $S(T)$ can be imbedded in some Tychonoff cube R and we identify $S(T)$ with its homeomorphic image in R. Since the spaces T_B and I_a are all Peano spaces, it follows [4, Theorem 8] that $S(T_B)$ and $S(I_a)$ are CAR*’s, and hence each $S(T, B)$ is a CAR*. Each retraction $r_B : S(T) \to S(T, B)$ can therefore be extended to a retraction $p_B : R \to S(T, B)$.

Now let $f : S(T) \to S(T)$ be a continuous function. The composition $fp_B : R \to S(T)$ is a continuous function on a cube into itself and has a fixed point. Let E_B be a fixed point of fp_B; then $E_B \subseteq S(T)$. This determines a net $\{ E_B \}$ in the compact space $S(T)$ on \mathcal{C} and hence [2, Theorem 24] there exists a subnet $\{ E_C \}$ on a cofinal subset \mathcal{C} of \mathcal{C} with a limit E in $S(T)$. By the lemma $\lim E = E$ implies $\lim E_C = E$. Since f is continuous this means that $\lim f(E_C) = f(E)$ but $f(E_C) = fpc(E_C) = E_C$. Hence $f(E) = E$ and the theorem is proved.

Corollary. If X is a CAR* then $S(X)$ has the fixed point property.

References

University of Miami