METRIZABILITY OF DECOMPOSITION SPACES

A. H. STONE

1. Introduction. Let \(f \) be a quasicompact continuous mapping of a metric space \(S \) onto a topological space \(E \); that is, let \(f \) be a mapping of \(S \) onto \(E \) such that a subset \(Y \) of \(E \) is open (closed) in \(E \) if and only if \(f^{-1}(Y) \) is open (closed) in \(S \). As is well known,\(^1\) \(E \) is then homeomorphic, in a natural way, to the hyperspace of the decomposition of \(S \) into the disjoint nonempty sets \(F_p = f^{-1}(p) \) (\(p \in E \)), while conversely the hyperspace of every decomposition of \(S \) into disjoint nonempty sets \(F_p \) arises in this way, essentially uniquely. The object of this paper is to determine conditions under which \(E \) will be metrizable. Results of this nature have been known for some time, particularly for the special case in which \(f \) is closed (i.e., \(f(X) \) is closed in \(E \) whenever \(X \) is closed in \(S \))—or, equivalently, the case in which the decomposition \(\{F_p\} \) is upper semi-continuous (i.e., if \(F_p \subseteq U \) where \(U \) is open, there exists an open set \(V \) such that \(F_p \subseteq V \) and every \(F_q \) meeting \(V \) is contained in \(U \)).\(^2\) But it seems to have escaped notice that the problem has a simple complete answer in this case (Theorem 1), without any assumptions of compactness or separability.\(^3\) We shall also improve some known results about quasicompact images of locally compact spaces (Theorems 2 and 3), and obtain a criterion (Theorem 4) for the metrizability of \(E \) when \(f \) is open (i.e., when the decomposition is lower semi-continuous). Here the conditions we obtain are sufficient but not necessary; however, we show by examples that they are not superfluous. Finally we apply Theorem 1 to obtain a simple description of the case in which \(f \) is both open and closed (i.e., when the decomposition is continuous); it turns out that \(E \) is then always metrizable, with a quite convenient metric.

2. Closed mappings.

Received by the editors April 22, 1955.

\(^1\) See [2, p. 65; 5; 10]. In the terminology of [2] “quasicompact continuous” = “stark-stetig.” In the terminology of Bourbaki, \(E \) is the space \(S/R \) where \(R \) is the equivalence relation corresponding to \(f \) (i.e., \(xRy \iff f(x) = f(y) \)).

\(^2\) See [9, p. 123; 4]. The term “upper semi-continuous decomposition” has been used in the literature with several different meanings, but that given above seems to be generally adopted now. It is equivalent to “stetig Zerlegung” in [2], except that we do not require \(F_p \) to be closed.

\(^3\) Another, independent, proof of Theorem 1 has appeared after this paper was written; see K. Morita and S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad. vol. 32 (1956) pp. 10–14.
Theorem 1. Let f be a closed continuous mapping of a metric space S onto a topological space E. Then the following statements are all equivalent:

(i) E satisfies the first countability axiom.
(ii) For each $p \in E$, $f^{-1}(p)$ has a compact frontier (in S).
(iii) E is metrizable.

Remark. E is in any case a T_1 space, for each $p \in E$ is of the form $f(x)$ where (x) is closed. Hence $F_p = f^{-1}(p)$ is closed in S, for each $p \in E$.

It is enough to prove (i) \Rightarrow (ii) and (ii) \Rightarrow (iii).

(i) \Rightarrow (ii). Let $\{ W_n(p) \}$ ($n = 1, 2, \ldots$) be a countable basis of open neighborhoods of $p \in E$. If $Fr(F_p)$ is not compact, there is a sequence $\{ x_n \}$ ($n = 1, 2, \ldots$) of points of $Fr(F_p)$ having no cluster point in $Fr(F_p)$, and consequently no cluster point in S. Now $f^{-1}(W_n(p))$ is an open set containing F_p; as F_p is closed, $x_n \in f^{-1}(W_n(p))$, and so there exists $y_n \in S - F_p$ such that $y_n \in f^{-1}(W_n(p))$ and $\rho(x_n, y_n) < 1/n$, ρ denoting the distance in S. Let $Y = \{ y_n \}$; Y is closed, since the sequence $\{ y_n \}$ has no cluster point in S (else the sequence $\{ x_n \}$ would). Hence $Q = f(Y)$ must be closed in E. By construction, $p \notin Q$; yet $p \notin \overline{Q}$ since $W_n(p)$ meets Q in $f(y_n)$, and this contradicts the closedness of Q.

(ii) \Rightarrow (iii) The case in which the sets F_p are themselves compact has been established by S. Hanai, and the present proof uses the same idea as his. We construct for each $p \in E$ a sequence $\{ W_n(p) \}$ ($n = 1, 2, \ldots$) of open sets and prove (1) $W_1(p) \supset W_2(p) \supset \cdots$, (2) $\bigcap_1^n W_n(p) = (p)$, (3) the sets $W_n(p)$ form a basis at p, (4) given a positive integer n and a point p of E, there exists m such that whenever $W_m(q)$ meets $W_n(p)$ we have $W_m(q) \subseteq W_n(p)$. By a theorem of Mrs. Frink [3], E will then be metrizable.

For any set $X \subseteq S$, write $S(X, \epsilon)$ to denote the open ϵ-neighborhood $\{ y \mid \rho(y, X) < \epsilon \}$ of X. (If $X = \emptyset$, $S(X, \epsilon) = \emptyset$.) Now write $N^*_p = S(\text{Fr}(F_p), 1/n)$, $U^*_n = N^*_n \cup \text{Int}(F_p)$, $V^*_n = \bigcup \{ F_q \mid F_q \subseteq U^*_n \}$, and $W_n(p) = f(V^*_n) = \{ q \mid F_q \subseteq U^*_n \}$. Thus $W_n(p) = E - f(S - U^*_n)$; and, as U^*_n is open, it follows from the closedness of f that $W_n(p)$ and so V^*_n are open. Clearly $U^*_n \supset V^*_n \supset F_p$, so $W_n(p) \not\supset p$. The assertion (1) is trivial, and (2) follows from (3) since E is T_1. To prove (3), let G be any open set (in E) containing p; then $\text{Fr}(F_p) \subseteq F_p \subseteq f^{-1}(G)$, and so the closed sets $\text{Fr}(F_p)$, $S - f^{-1}(G)$, are disjoint. As $\text{Fr}(F_p)$ is com-

4 The implication (iii) \Rightarrow (ii) is due to Vaštefn [7]. If S is separable, the implication (i) \Rightarrow (iii) is implicit in [10].

5 See [4]; another proof is implicit in [11, p. 367]. The general case can be deduced from the F_c-compact case; but, as the proof in [4] has a gap and that in [11] uses different basic definitions, it seems preferable to give a direct argument.
pact, the distance \(d = \rho \{ \text{Fr} (F_p), S - f^{-1}(G) \} \) is positive. Take \(n > 1/d \);
then \(N^n_p \subseteq f^{-1}(G) \), and consequently \(f^{-1}(G) \supseteq U^n_p \supseteq V^n_p \), so that \(G \supseteq W_n(p) \), q.e.d.

To prove (4), suppose \(p \) and \(n \) given. If \(\text{Int} (F_p) \neq \emptyset \), pick a point \(x_p \in \text{Int} (F_p) \) arbitrarily. Now take \(m \) so large that

(a) \(m > 2n \),

(b) if \(\text{Fr} (F_p) \neq \emptyset \), \(\rho (\text{Fr} (F_p), S - V^n_p) > 2/m \),

(c) if \(\text{Int} (F_p) \neq \emptyset \), \(S(x_p, 1/m) \subseteq V^n_p \).

Suppose \(W_m(q) \) meets \(W_m(p) \) in \(r \), say, where we assume that \(q \neq p \).
We first show that \(F_q \subseteq V^n_p \). Take \(w \in F_q \subseteq V^n_q \supseteq U^n_q \cap U^n_p \). If \(w \in \text{Int} (F_q) \), then \(F_q \) meets \(V^n_p \) and consequently \(F_q \subseteq V^n_q \subseteq V^n_p \) as required. Since \(w \in U^n_q = N^n_q \cup \text{Int} (F_q) \), we may assume now that \(w \in N^n_q \). Again, if \(w \in \text{Int} (F_p) \), then \(x_p \) exists; also \(F_p \) meets \(V^n_q \) and so \(F_p \subseteq V^n_q \); hence \(x_p \in V^n_q \subseteq \text{Int} (F_q) \cup N^n_q \), and as \(x_p \in F_q \) (for \(p \neq q \)) we have \(x_p \in N^n_q \), which violates condition (c). Hence \(w \in N^n_q \cap N^n_p \), and there exist points \(x \in \text{Fr} (F_q) \), \(y \in \text{Fr} (F_q) \), such that \(\rho (w, x) < 1/m \) and \(\rho (w, y) < 1/m \). It follows that \(\rho (x, y) < 2/m \), and condition (b) shows that \(y \in V^n_q \). As \(F_q \) meets \(V^n_p \), we have \(F_q \subseteq V^n_p \).

Next we deduce \(U^n_q \subseteq U^n_p \). The preceding argument has shown that \(F_q \subseteq U^n_p \cup \text{Int} (F_q) \); hence \(F_q \subseteq N^n_q \). Let \(z \) be any point of \(U^n_q \); then there exists \(y' \in F_q \) such that \(\rho (z, y') < 1/m < 1/2n \), from (a). Since \(y' \in N^n_q \), there exists \(x' \in \text{Fr} (F_q) \) such that \(\rho (x', y') < 1/2n \). Thus \(\rho (x', z) < 1/n \), so that \(z \in N^n_p \subseteq U^n_q \). This proves \(U^n_q \subseteq U^n_p \) if \(p \neq q \); but if \(p = q \) then \(U^n_q \subseteq U^n_p \) trivially. Hence \(V^n_q \supseteq V^n_p \) in any case, whence \(W_m(q) \subseteq W_m(p) \), and the proof is complete.

Corollary 1. If the conditions of the theorem are satisfied, and if \(S \) is separable, or locally separable, or compact, or locally compact, then \(E \) also has the corresponding property.

Compactness and separability are preserved by arbitrary continuous mappings. Suppose \(S \) locally compact; we prove \(E \) locally compact at \(p \in E \). Since \(\text{Fr} (F_p) \) is compact, it is covered by a finite number of open sets with compact closures. Thus, if \(n \) is large enough, \(N^n_p \) has a compact closure. So therefore have \(V^n_q \cap N^n_p \) and (since \(f \) is closed) \(f(V^n_q \cap N^n_p) \). But, if \(\text{Fr} (F_p) \neq \emptyset \), \(f(V^n_q \cap N^n_p) = f(V^n_q) = W_n(p) \).
If \(\text{Fr} (F_p) \neq \emptyset \), \(F_p \) is an open inverse set, so \((p) \) is a compact neighborhood of \(p \). Finally, the proof for local separability is entirely similar.

Remark. Corollary 1 does not apply to local peripheral compactness.

Corollary 2. If \(f \) is a closed continuous mapping of a metric space

6 A space is locally peripherally compact if every point has arbitrarily small neighborhoods with compact frontiers. Every 0-dimensional space is locally peripherally compact.
S onto a locally countably compact space \(E \), then \(E \) is metrizable (and consequently the sets \(\text{Fr}(f^{-1}(p)) \) are compact).

For each point \(p \) of \(E \) has a sequence of open neighborhoods \(X_n(p) = \{ q \mid F_q \subset S(F_p, 1/n) \} \) with the property \(\bigcap_n X_n(p) = \{ p \} \). Since \(E \) is locally countably compact and regular,\(^7\) one easily derives open neighborhoods \(Y_n(p) \) of \(p \) such that \(\text{Cl}(Y_n(p)) \subset X_n(p) \), \(Y_n(p) \supset Y_{n+1}(p) \), and \(\text{Cl}(Y_1(p)) \) is countably compact; here \(\text{Cl} \) denotes the closure. It is a straightforward matter to verify that the sets \(Y_n(p) \) form a basis of neighborhoods at \(p \); hence \(E \) satisfies the first axiom of countability, and Theorem 1 applies.

3. Monotone mappings. The condition that \(f \) be closed cannot be omitted in Theorem 1, in general \([2, \text{p. 70, Example 2}]\), even if \(f \) is open, \(S \) a subset of the plane, \(E \) a Hausdorff space with a countable basis, and the sets \(f^{-1}(p) \) are all compact. However, in some cases the closedness of \(f \) follows from the other hypotheses. This is so, for example, if \(S \) is compact and \(E \) is Hausdorff. A less obvious example is the following, which generalizes a theorem of A. V. Martin \([5, \text{Theorem 5}]\).

Theorem 2. Let \(E \) be the hyperspace of a decomposition of a locally peripherally compact metric space \(S \) into connected sets with compact frontiers; equivalently, let \(E = f(S) \) where \(f \) is a quasicompact continuous mapping such that, for each \(p \in E \), \(f^{-1}(p) \) is connected and \(\text{Fr}(f^{-1}(p)) \) is compact. Then, if \(E \) is a Hausdorff space, \(f \) is closed (and consequently \(E \) is metrizable, by Theorem 1); further, \(E \) is then locally peripherally compact.

As before, we write \(F_p = f^{-1}(p) \); we first prove that the decomposition \(\{ F_p \} \) of \(S \) is upper semi-continuous. Given any open set \(U \supset F_p \), cover \(\text{Fr}(F_p) \) by a finite number of open sets \(U_1, U_2, \ldots, U_m \) such that \(U_i \subset U \) and \(\text{Fr}(U_i) \) is compact \((1 \leq i \leq m)\). Let \(V = U_1 \cup U_2 \cup \cdots \cup U_m \cup \text{Int}(F_p) \); then \(F_p \subset V \subset U \), and the set \(\text{Fr}(V) \), being a closed subset of \(\text{Fr}(U_1) \cup \cdots \cup \text{Fr}(U_m) \cup \text{Fr}(F_p) \), is compact. Take \(W_n = S(F_p, 1/n) \cup \text{Int}(F_p) \), an open set containing \(F_p \); it is enough to prove that, for some \(n \), every \(F_q \) meeting \(W_n \) is contained in \(V \). Suppose this false; then, for each \(n \), we obtain \(q_n \in E \) such that \(F_{q_n} \) meets both \(W_n \) and \(S - V \). Since \(q_n \neq p \) (for \(F_p \subset V \)), \(F_{q_n} \) contains a point \(y_n \) of \(S(F_p, 1/n) \), and there exists \(x_n \in \text{Fr}(F_p) \) such that \(\rho(x_n, y_n) < 1/n \). Again, for all \(n \) greater than some \(n_0 \), we have \(1/n < \rho(\text{Fr}(F_p), S - V) \), so that \(W_n \subset V \). Hence \(F_{q_n} \) meets both \(V \) and \(S - V \), and so meets \(\text{Fr}(V) \), say in \(z_n \) \((n > n_0)\).

For a suitable subsequence of values \(n' \) of \(n \), we have \(z_n' \rightarrow z \in \text{Fr}(V) \),

\(^7\) In fact, any closed continuous image of a normal space is normal \([10]\).
Now \(x_n \rightarrow x \in \text{Fr}(F_p) \), and therefore \(y_n \rightarrow x \). Now \(z \in F_p \), since \(V \) contains \(F_p \) and is disjoint from \(\text{Fr}(V) \). Let \(f(z) = q \); then \(q \in E - (p) \) and \(z \in F_q \). Since \(E \) is a Hausdorff space, there exist disjoint open inverse sets \(Y \supset F_p, Z \supset F_q \). If \(n' \) is large enough, \(y_n \in Y \) and \(z_n \in Z \); thus \(F_{y_n} \) meets, and so is contained in, both \(Y \) and \(Z \), giving a contradiction.

This proves the decomposition upper semi-continuous; the mapping \(f \) is therefore closed, and Theorem 1 applies. Finally, to prove \(E \) locally peripherally compact, suppose \(p \in E \) and an open set \(G \ni p \); as above, we construct an open set \(V \supset F_p \) such that \(V \subset f^{-1}(G) \) and \(\text{Fr}(V) \) is compact. Let \(W = \{ q \mid F_q \subset V \} = E - f(S - V) \), an open set such that \(p \in W \subset G \). Write \(X = f^{-1}(W) \); clearly \(X \subset V \). Suppose \(q \) is any point of \(\text{Fr}(W) \); then \(q \in W \), so \(F_q \) meets \(S - V \). But \(q \in W = \text{Cl}(f(X)) = f(X) \) (since \(f \) is closed), so \(q \in f(V) \) and \(F_q \) also meets \(V \). Being connected, \(F_q \) meets \(\text{Fr}(V) \); hence \(q \in f(\text{Fr}(V)) \). This proves \(\text{Fr}(W) \subset f(\text{Fr}(V)) \), which is compact; thus \(\text{Fr}(W) \) is also compact, q.e.d.

4. General quasicompact mappings. The condition that the sets \(F_p \) are all connected cannot be omitted from Theorem 2, even if they are all compact and \(S \) is a locally compact subset of the plane; examples to show this are easily constructed. We have, however, the following theorem (which generalizes another theorem of Martin [5, Corollary to Theorem 4]), in which the mapping \(f \) can in fact be neither open nor closed.

Theorem 3. If \(f \) is a quasicompact continuous mapping of a locally compact separable metric space \(S \) onto a Hausdorff space \(E \) with a locally countable basis, then \(E \) is a locally compact separable metric space.

Lemma 1. Let \(f \) be a quasicompact continuous mapping of a topological space \(S \) onto a Hausdorff space \(E \) with a locally countable basis at \(p \in E \), and let \(\{ U_n \} \) \((n = 1, 2, \ldots) \) be an increasing sequence of open sets of \(S \) such that \(\bigcup U_n \cap F_p = f^{-1}(p) \). Then, for some \(n \), \(p \in \text{Int}(f(U_n)) \).

Let \(\{ W_n \} \) \((n = 1, 2, \ldots) \) be a basis of neighborhoods of \(p \); we may suppose \(W_1 \supset W_2 \supset \ldots \). Without loss of generality, we may assume that each \(U_n \) meets \(F_p \). We show that, for some \(n, f(U_n) \supset W_n \). Suppose not; then, for each \(n \), there is a point \(q_n \in W_n - f(U_n) \). Write \(Q = \{ q_n \} \) \((n = 1, 2, \ldots) \), \(X = f^{-1}(Q) \); as \(p \in \text{Cl}Q, Q \) is not closed, and therefore \(X \) is not closed and there exists a point \(x \in \text{Fr}(X) \). Then \(f(x) \in \text{Fr}(Q) \), and it is easy to deduce (from the fact that \(E \) is Hausdorff and \(q_n \rightarrow p \)) that \(f(x) = p \). Hence \(x \in F_p \), so \(x \in U_n \) for some \(n \). Then \(U_n - \bigcup \{ f^{-1}(q_n), 1 \leq m \leq n \} \) is an open set containing \(x \) but
disjoint from X, contradicting $x \in \overline{X}$ and establishing the lemma.

Lemma 2. If E is the hyperspace of a decomposition $\{F_p\}$ of a locally compact topological space S, for which each $\text{Fr}(F_p)$ is σ-compact, and if E is Hausdorff and has a locally countable base, then E is locally compact.

As usual, we use f to denote the natural quasicompact mapping of S onto E, so that $f^{-1}(p) = F_p$. By hypothesis, given $p \in E$, we can write $\text{Fr}(F_p) = \bigcup K_n$ ($n = 1, 2, \ldots$) where K_n is compact. Since S is locally compact, K_n can be covered by finitely many open sets with compact closures; in this way we obtain open sets $G_n \supseteq K_n$ such that $\text{Cl}(G_n)$ is compact and $G_1 \subset G_2 \subset \cdots \cdots$. Applying Lemma 1 to $U_n = G_n \cup f^{-1}(F_p)$, we can $p \in f^{-1}(f(U_n))$ for some n. If $\text{Fr}(F_p) \neq \emptyset$, this gives $p \in f^{-1}(f(G_n)) \subset f(\text{Cl}(G_n))$, which is compact and closed in the Hausdorff space E. If $\text{Fr}(F_p) = \emptyset$, (p) is a compact neighborhood of p.

Lemma 3. If E is the hyperspace of a decomposition $\{F_p\}$ of a topological space S with a countable base, and if E is Hausdorff and has a locally countable base, then E has a countable base.

(For upper semi-continuous decompositions, this was proved by Whyburn [10, Theorem 10].)

Let $\mathcal{B} = \{B_m\}$ be a countable base of open sets of S; we prove E has a base of the form $\{f^{-1}(f(U))\}$ where U is a finite union of sets of \mathcal{B}. Given any $p \in E$ and any open set $G \ni p$, we have $F_p \subset f^{-1}(G)$, and can cover F_p by a sequence of sets B_{m_1}, B_{m_2}, \ldots, of \mathcal{B}, all satisfying $B_{m_i} \subset f^{-1}(G)$. Write $U_n = B_{m_1} \cup \cdots \cup B_{m_n}$; by Lemma 1 we have $p \in f^{-1}(f(U_n))$ for some n, where $f(U_n) \subset G$, and the lemma is proved.

Proof of Theorem 3. As S is here separable metric and locally compact, the same is true of each $\text{Fr}(F_p)$, which is therefore σ-compact. By Lemma 2, E is locally compact, and therefore regular. Also E has a countable base, by Lemma 3, and so it is metrizable.

As another immediate consequence of Lemma 3, we have:

Corollary. If f is a quasicompact continuous mapping of a separable metric space S onto a regular space E with a locally countable base, then E is separable metric.

The extension of Theorem 3 (and its corollary) to nonseparable spaces S presents unexpected difficulties. We shall see from examples (§6) that even an open continuous image of a locally compact metric space need not be metrizable, even if it is regular (and has a locally countable base) and the sets $\text{Fr}(F_p)$ are compact. One fairly im-

8 A set is σ-compact if it is the union of countably many compact sets.
mediate extension of Theorem 3 is as follows.

Theorem 3'. Let \(f \) be a quasicompact continuous mapping of a locally compact metric space \(S \) onto a Hausdorff space \(E \) with a locally countable base, and suppose that the sets \(Fr (f^{-1}(p)) \) are separable and that \(E \) is paracompact. Then \(E \) is a locally compact metric space.

For the argument proving Theorem 3 here shows that each \(p \in E \) has a compact neighborhood of the form \(f(G) \) where \(G \) is compact. Since \(E \) is Hausdorff, the mapping \(f \) restricted to \(G \) is closed; hence, by a well-known special case of Theorem 1, \(f(G) \) is metrizable. Thus \(E \) is locally metrizable. Since \(E \) is paracompact, \(E \) has a locally finite covering by closed metrizable sets, and is therefore [6] metrizable.

The condition in Theorem 3' that \(E \) be paracompact cannot be dispensed with, in general, even if \(f \) is open (§6). I do not know whether it is superfluous if the sets \(f^{-1}(p) \) are assumed to be separable. If \(f \) is open and the sets \(f^{-1}(p) \) are separable, the paracompactness of \(E \) follows from the other hypotheses (see the corollary to Theorem 4 below).

5. **Open mappings.** If \(f \) is open, Theorem 3 has the following extension to not necessarily separable spaces; perhaps the most interesting feature of the theorem is that none of the hypotheses is superfluous (§6).

Theorem 4. If \(f \) is an open continuous mapping of a metric, locally separable space \(S \) onto a regular space \(E \), and if for each \(p \in E \) the set \(f^{-1}(p) \) is separable, then \(E \) is metrizable and locally separable.

Lemma 1. The theorem is true if \(S \) is separable, and \(E \) is then separable.

This is a special case of the corollary to Theorem 3; it is also obvious directly.

Lemma 2. If \(f(S)=E \), where \(f \) is open and continuous and each \(f^{-1}(p) \) is separable, then for every separable subset \(Y \) of \(E \), \(f^{-1}(Y) \) is separable.

Let \(Q = \{ q_m \} \ (m = 1, 2, \ldots) \) be a countable subset of \(Y \) such that \(\overline{Q} \supset Y \), and for each \(m \) let \(X_m \) be a countable dense subset of \(f^{-1}(q_m) \). Write \(X = \bigcup X_m \); it is easy to see that the countable set \(X \) is dense in \(f^{-1}(Y) \).

Proof of Theorem 4. By a theorem of Alexandroff [1], \(S \) can be expressed as a union of pairwise disjoint nonempty open sets \(S_\lambda \), each of which is separable. Write \(S_\lambda \sim S_\mu \) to mean that there exists a finite sequence \(\lambda = \lambda_0, \lambda_1, \ldots, \lambda_k = \mu \) such that each set \(f(S_{\lambda_{i-1}}) \) meets
It is easily verified that \(\sim \) is an equivalence relation. Let the union of the \(S_\mu \)'s equivalent to \(S_\lambda \) be \(T_\lambda \); thus \(T_\lambda \) is open, and \(T_\lambda \) and \(T_\mu \) are either identical or disjoint. Further, \(T_\lambda \) is an inverse set, (i.e., equals \(f^{-1}(f(T_\lambda)) \)). For suppose \(F_\mu = f^{-1}(p) \) meets \(T_\lambda \), say in \(y \in F_\mu \cap S_\eta \) where \(S_\eta \sim S_\lambda \). If \(x \) is any point of \(F_\mu \), we have \(x \in S_\eta \) and \(p \in f(S_\eta) \cap f(S_\mu) \); hence \(S_\eta \sim S_\mu \sim S_\lambda \), so that \(x \in T_\lambda \). Thus \(F_\mu \subset T_\lambda \) whenever \(F_\mu \) meets \(T_\lambda \), and \(T_\lambda \) is an inverse set. It follows that the distinct sets \(f(T_\lambda) \) are disjoint and open, and they cover \(E \); to prove the theorem, it will suffice to prove that each \(f(T_\lambda) \) is separable metric, and by Lemma 1 it suffices to prove that each \(F_\mu \) is separable.

Now let \(T_\alpha^n \) denote the union of those sets \(S_\mu \) which can be reached from \(S_\lambda \) in at most \(n \) steps—that is, for which there is a sequence \(\lambda = \lambda_0, \lambda_1, \ldots, \lambda_k = \mu \) of the type used to define \(\sim \), with \(k \leq n \). Clearly \(T_\lambda = T_\alpha^n \cup T_\alpha^{n+1} \cup \cdots \), and it is enough to prove that each \(T_\alpha^n \) is separable. Suppose this true for one particular value of \(n \). Then \(T_\alpha^{n+1} \) consists of \(T_\alpha^n \) together with those sets \(S_\mu \) for which \(f(S_\mu) \) meets \(f(T_\alpha^n) \)—that is, for which \(S_\mu \) meets \(f^{-1}(f(T_\alpha^n)) \). By hypothesis, \(T_\alpha^n \) is separable; hence so is \(f(T_\alpha^n) \), and Lemma 2 now shows that \(f^{-1}(f(T_\alpha^n)) \) is also separable. It can therefore meet at most countably many of the disjoint open sets \(S_\mu \). Thus \(T_\alpha^{n+1} \) is a union of countably many separable sets, and is again separable. Since \(T_\alpha^n = S_\lambda \) is separable, the separability of \(T_\alpha^n \) follows for all \(n \); and the theorem is proved.

Corollary. If \(f \) is an open continuous mapping of a locally compact metric space \(S \) onto a Hausdorff space \(E \), and if for each \(p \in E \) the set \(f^{-1}(p) \) is separable, then \(E \) is a locally compact metric space. (Compare Theorem 3'.)

For, from the second lemma to Theorem 3, \(E \) is locally compact, and therefore regular; now Theorem 4 applies.

6. **Counterexamples.** The following examples show the need for the restrictions imposed in Theorems 3, 3' and 4.\(^9\) In each case, \(f \) will be an open (and so certainly quasi-compact) continuous mapping of a metric space \(S \) onto a nonmetrizable space \(E \); the openness of \(f \) is easily verified from the fact that \(E \) is in each case the hyperspace of a decomposition \(\{ F_\mu \} \) of \(S \) which is lower semi-continuous (that is, given any open set \(U \) meeting \(F_\mu \), there exists an open set \(V \supset F_\mu \) such that every \(F_\mu \) meeting \(V \) meets \(U \)). In the first two examples, \(S \) is locally compact; in all three, the openness of \(f \) guarantees that

\(^9\) See [2, p. 70, Ex. 1, 2] for examples showing that “Hausdorff” cannot be replaced by “\(T_1 \)” in Theorems 3 and 3’ (even if \(S \) is compact), and that “regular” cannot be replaced by “Hausdorff” in Theorem 4 (even if \(S \) is separable).
E will have a locally countable base.

(1) For each countable ordinal α, let E_α denote the set of ordinals not exceeding α; in the usual topology, E_α is a compact metric space, and we suppose it metrized with diameter <1, say with metric ρ_α. Let S be the set of all ordered pairs (α, β), where α, β are countable ordinals and $\alpha \geq \beta$. Define a distance ρ on S by: $\rho\{(\alpha, \beta), (\alpha', \beta')\} = \rho_\alpha(\beta, \beta')$ if $\alpha = \alpha'$, 1 otherwise. Thus S is the discrete union of the spaces E_α, and is locally compact (all sets of diameter less than 1 having compact closures). The mapping f given by $f(\alpha, \beta) = \beta$ is an open continuous mapping of S onto the space E of all countable ordinals (in its usual topology); the corresponding decomposition is $\{F_\beta\}$ where $F_\beta = \{(\alpha, \beta) | \alpha \geq \beta\}$. Here E is a completely normal Hausdorff space, and is locally compact and has a locally countable base, but is not metrizable.

(2) Our second example is similar, but E will satisfy fewer separation axioms; to compensate for this, the sets F_p will have compact frontiers. Let I denote the unit interval $0 \leq x \leq 1$, and let A, R denote respectively the sets of irrational and rational numbers in I. For each $a \in A$, choose one sequence $\{r_n(a)\} \to a$ with $r_n(a) \in R$ (e.g., by using the decimal expansion). Now take $S = (R \times A) \cup A$ metrized as follows: $\rho\{(r_n(a), a), a\} = 1/m$, $\rho\{(r_n(a), a), (r_n(a), a)\} = |1/m - 1/n|$, and all other distances between distinct points are 1. Thus S is the discrete union of sets $S_a = (R \times a) \cup a$, and S_a consists of a sequence $\{(r_n(a), a)\}$ converging to a, together with a discrete sequence of points (the other points (r, a)). Clearly S is a locally compact metric space (all closed sets of diameter less than 1 being compact). Now map S in I by: $f((r, a)) = r$, $f(a) = a$. The corresponding decomposition is characterized by $F_p = \{(r, a) | a \in A\}$, $F_a = \{a\}$. Each $F_p, (p \in I)$ is both open and closed in S, so in any case $Fr(F_p)$ is compact ($p \in I$) and has, in fact, at most one point. Further, from the fact that each F_p is either open or consists of a single point, it is immediate that the decomposition $\{F_p\}$ is lower semi-continuous; thus f is an open continuous mapping of S onto the hyperspace E of the decomposition, which is easily seen to consist of I with the following topology. A typical neighborhood of $r \in R$ is (r); a typical neighborhood of $a \in A$ consists of a together with all points $r_n(a)$ for n sufficiently large. These neighborhoods are closed, as well as open, in E; hence E is a regular Hausdorff space. But E is separable (R is a countable dense set), yet contains an uncountable discrete set (A); hence E is not metrizable. (If the continuum hypothesis is true, E cannot be normal; see F. B. Jones, Concerning normal and completely normal spaces, Bull. Amer. Math. Soc. vol. 43 (1937) pp. 671–677.)

(3) In our last example, the sets F_p will themselves be compact,
though S will no longer be locally separable. Let $N =$ set of all positive integers, $G =$ set of all mappings g of N in N. Roughly, S will consist of N, G, a sequence of points converging to each $g \in G$, and c sequences of points (one for each $g \in G$) converging to each $n \in N$. Precisely, we take $S = G \cup (G \times N) \cup N \cup (N \times G \times N)$, and define a metric ρ on S as follows:

$$\rho \{g, (g, n)\} = \frac{1}{n}; \quad \rho \{(g, n), (g, m)\} = \frac{1}{n} + \frac{1}{m} \text{ if } n \neq m;$$

$$\rho \{n, (n, g, m)\} = \frac{1}{m}; \quad \rho \{(n, g, m), (n, g', m')\} = \frac{1}{m} + \frac{1}{m'} \text{ if } (g, m) \neq (g', m');$$

and all other distances between distinct points are 2. It is easily verified that ρ is a metric. Note that the points (g, m) and (n, g, m) are isolated, each having distance at least $1/m$ from any other point. Decompose S into the 2-point sets $F_p = \{(g, n), (n, g, g(n))\}$ and the other single points. The decomposition is lower semi-continuous (for the sets F_p with more than one point are open), and so corresponds to an open continuous mapping f of S onto the hyperspace E; further the sets $F_p (= f^{-1}(p))$ are all compact (having, in fact, at most 2 points). It is a straightforward matter to verify that E is a regular T_1 space. Now the sets $f(G), f(N)$ are disjoint and closed in E; if E were normal, there would be disjoint open sets $U \supset f(N), V \supset f(G)$. Then $N \subset f^{-1}(U)$, which is open in S; hence, for each $n \in N$, we can choose $m = h(n)$ (say) large enough for $S(n, 1/(m-1)) \subset f^{-1}(U)$, and this gives $f(n, g, h(n)) \in U$. This is true for all $g \in G$, and so in particular for $g = h$; thus $f(h, n) = f(n, h, h(n)) \in U$, for all $n \in N$. But if n is large enough, $(h, n) \in S(h, 1/(n-1)) \subset f^{-1}(V)$, so that $f(h, n) \in V$, contradicting $U \cap V = \emptyset$. Thus E is not normal, and so certainly not metrizable.10

7. Open-closed mappings. We conclude by considering the case in which the mapping f of the metric space S is simultaneously open and closed—or, equivalently, in which the decomposition $\{F_p\}$ of S is continuous (i.e., both upper and lower semi-continuous). The essential content of the following theorem is due to Wallace [8], but Theorem 1 makes the proof very simple.

10 Incidentally, example (3) answers a question raised in [2, p. 70] by giving a decomposition of a normal space for which the hyperspace is regular but not normal. Another example answering this question has been given by T. Ganea, On the Prüfer manifold and a problem of Alexandroff and Hopf, Acta Scientiarum Math. vol. 15 (1954) pp. 231–235.
Theorem 5. Necessary and sufficient conditions for a decomposition of a metric space \(S \) into disjoint nonempty closed sets \(F_p \) to be continuous are:

(a) Each \(F_p \) is either open or compact.

(b) Given a compact \(F_p \) and \(\epsilon > 0 \), there exists \(\delta > 0 \) such that whenever \(\rho(F_p, F_q) < \delta \) we have \(d(F_p, F_q) < \epsilon \) (\(d \) denoting the Hausdorff distance).

To prove (a) and (b) necessary, we note that the decomposition space \(E \) now has a locally countable basis (for the corresponding mapping \(f \) of \(S \) onto \(E \) is open), so by Theorem 1 each \(F_p \) is compact. If \(\text{Int}(F_p) = \emptyset \), this proves \(F_p \) compact. If \(\text{Int}(F_p) \neq \emptyset \), \(f(\text{Int}(F_p)) = (p) \) is open in \(E \), so \(F_p \) is open in \(S \). Thus (a) follows; and (b) is now a routine restatement of upper and lower semi-continuity. Conversely, if (a) and (b) are given, it is easy to deduce that the decomposition is both upper and lower semi-continuous.

Corollary. If \(f(S) = E \), where \(f \) is an open, closed, continuous mapping of a metric space \(S \), then \(E \) is metrizable, with metric \(\sigma \) given by \(\sigma(p, q) = d(f^{-1}(p), f^{-1}(q)) \).

References

The University, Manchester

\footnote{This corollary is due to V. K. Balanchandran, A mapping theorem for metric spaces, Duke Math. J. vol. 22 (1955) pp. 461–464.}