This paper consists of two more or less disjoint notes, the first on integral formal power series in several variables and the second concerning the generalized Puiseux expansion of a certain algebraic function of one variable over a modular field.

1. Analytically independent formal (integral) power series. Let \(k \) be an arbitrary field and let \(L_n \) be the ring of formal series \(k[[x_1, x_2, \cdots, x_n]] \) in \(n \) variables \(x_1, x_2, \cdots, x_n \) with coefficients in \(k \). We recall that given \(m \) elements \(f_1(x_1, x_2, \cdots, x_n), f_2(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n) \) of \(L_n \) one says that \(f_1, f_2, \cdots, f_m \) are analytically dependent if there exists \(0 \neq H(Z_1, Z_2, \cdots, Z_m) \in k[[Z_1, Z_2, \cdots, Z_m]] \) such that \(H(f_1(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n)) = 0 \). If \(f_1, f_2, \cdots, f_m \) are not analytically dependent then they are said to be analytically independent. Given an infinite number \(f_1, f_2, \cdots \) of elements of \(L_n \), these elements are said to be analytically independent if every finite number of them are analytically independent. Professor Samuel asked me whether \(L_2 \) contains three analytically independent elements. The answer is given in the following

Proposition. If \(n > 1 \) then \(L_n \) contains an infinite number of analytically independent elements.

Proof. It is known that there exists an infinite number \(g_1(y), g_2(y), \cdots \) of formal power series in one variable \(y \) with coefficients in \(k \) which are algebraically independent over \(k \) (Lemma 1 of [4]). Let \(f_i(x_1, x_2, \cdots, x_n) = x_2 g_i(x_1) \) for \(i = 1, 2, \cdots \). Let \(H(Z_1, Z_2, \cdots, Z_m) \) be an element of \(k[[Z_1, Z_2, \cdots, Z_m]] \) for which \(H(f_1(x_1, x_2, \cdots, x_n), f_2(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n)) = 0 \). Let \(H(Z_1, Z_2, \cdots, Z_m) = \sum_{j=0}^{\infty} H_j(Z_1, Z_2, \cdots, Z_m) \) where \(H_j(Z_1, Z_2, \cdots, Z_m) \) is a form of degree \(j \) in \(k[Z_1, Z_2, \cdots, Z_m] \). Then

\[
0 = H(f_1(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n)) = \sum_{j=0}^{\infty} x_2^j H_j(g_1(x_1), g_2(x_1), \cdots, g_m(x_1)).
\]

Therefore

Received by the editors August 23, 1955.

903
\[H_j(g_1(x_1), g_2(x_1), \ldots, g_m(x_1)) = \text{the coefficient of } x_j^j \text{ in } H(f_1, \ldots, f_m) = 0 \quad \text{for } j = 1, 2, \ldots. \]

Since \(g_1(x_1), g_2(x_1), \ldots, g_m(x_1) \) are algebraically independent over \(k \), we must have \(H_j(Z_1, Z_2, \ldots, Z_m) = 0 \) for \(j = 1, 2, \ldots \), i.e., \(H(Z_1, Z_2, \ldots, Z_m) = 0 \). Therefore \(f_1(x_1, x_2, \ldots, x_n), f_2(x_1, x_2, \ldots, x_n), \ldots \) are analytically independent.

Let us remark that any two elements \(f(x_1) \) and \(g(x_1) \) of \(L_1 \) are analytically dependent. If either \(f \) or \(g \) is zero then there is nothing to prove and hence we may suppose that \(f(x_1) \neq 0 \neq g(x_1) \). First assume that at least one of the two elements \(f(x_1) \) and \(g(x_1) \) is a non-unit; say \(f(x_1) \) is a non-unit. Then by Proposition 3.5 of Chevalley [2], \(L_1 \) is a finite module over \(k[[f(x_1)]] \) and hence \(g(x_1) \) is integral over \(k[[f(x_1)]] \). Therefore there exists \(0 \neq H(X, Y) \in k[[X]][[Y]] \) with \(H(f(x_1), g(x_1)) = 0 \). Now assume that \(f(x_1) \) and \(g(x_1) \) are both units. Then \(f^*(x_1) = f(x_1) - ag(x_1) \) is a non-unit, where \(a = f(0)/g(0) \). Hence by the previous case, there exists \(0 \neq H(X, Y) \in k[[X, Y]] \) with \(H(f^*(x_1), g(x_1)) = 0 \). Let \(H^*(X, Y) = H(X - aY, Y) \). Then \(H^*(f(x_1), g(x_1)) = 0 \). Also \(H^*(X, Y) \neq 0 \) since \(X \to X - aY, Y \to Y \) is an automorphism of \(L_1 \).

2. A fractional power series. Let \(k \) be an algebraically closed field of characteristic \(p \). If \(p = 0 \) then the theorem of Puiseux expansion is valid, i.e., any polynomial \(F(Y) = y^n + f_1(X) Y^{n-1} + \cdots + f_n(X) \) with \(f_i(X) \in k(X) \) can be factored in the form

\[F(Y) = \prod_{i=1}^{n} \left(Y - g_i(X^{1/m}) \right), \]

where \(m \) is some positive integer and where \(g_1(X), g_2(X), \ldots, g_n(X) \) are in the quotient field of \(k[[X]] \), i.e., in the integral formal power series field \(k((X)) \). If \(p \neq 0 \) then such a factorization is not always possible. A typical example of this is given by Chevalley on p. 64 of [3], namely:

\[F(Z) = Z^p - Z - X^{-1}. \]

If we force a factorization, we get the following generalized Puiseux expansion (where the denominators of the indices of \(X \) are unbounded):

\[F(Z) = \prod_{i=0}^{p-1} \left(Z + i - \sum_{i=1}^{\infty} X^{-1/p^i} \right). \]

Or getting rid of the poles, we get alternatively:
\[Z^p - X^{p-1}Z - 1 = \prod_{i=0}^{p-1} \left(Z + iX - \sum_{i=0}^{\infty} X^{i-p} \right). \]

These factorizations can be verified directly. They were used in discovering some of the examples discussed in [1].

Bibliography

Harvard University

ON THE COMPOSITUM OF ALGEBRAICALLY CLOSED SUBFIELDS

Shreeram Abhyankar

Professor Igusa asked me the following question: Given a field \(K \), is the compositum of all the (absolutely) algebraically closed subfields of \(K \) itself algebraically closed (of course, we are assuming that this compositum is not empty, i.e., that \(K \) contains the algebraic closure of its prime field)? We shall show in §1 that the answer to this question is in the negative in general. In §2, we shall give a special case in which the answer is in the affirmative.

1. **The algebraic closures of \(k(x) \), \(k(y) \) and \(k(x, y) \).** Let \(k \) be an arbitrary algebraically closed field, \(L = k(x, y) \) where \(x \) and \(y \) are algebraically independent over \(k \), \(L^* \) = an algebraic closure of \(L \), \(M = k(x) \), \(N = k(y) \), \(M^* \) = the algebraic closure of \(M \) in \(L^* \), \(N^* \) = the algebraic closure of \(N \) in \(L^* \), and \(K \) = the compositum of \(L^* \) and \(M^* \). Let \(T \) be the compositum of all the algebraically closed subfields of \(K \). Then \(M^* \subset T \) and \(N^* \subset T \) and hence \(T = K \). *We shall prove below that \(K \) cannot be algebraically closed.* In fact we shall show that in some sense \(K \) is much nearer to \(L \) than it is to \(L^* \) and hence that \(K \) is far from being algebraically closed.

Embed \(L = k(x, y) \) canonically into the formal power series field

Received by the editors August 23, 1955.