This paper consists of two more or less disjoint notes, the first on integral formal power series in several variables and the second concerning the generalized Puiseux expansion of a certain algebraic function of one variable over a modular field.

1. Analytically independent formal (integral) power series. Let \(k \) be an arbitrary field and let \(L_n \) be the ring of formal series \(k[[x_1, x_2, \cdots, x_n]] \) in \(n \) variables \(x_1, x_2, \cdots, x_n \) with coefficients in \(k \). We recall that given \(m \) elements \(f_1(x_1, x_2, \cdots, x_n), f_2(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n) \), of \(L_n \) one says that \(f_1, f_2, \cdots, f_m \) are analytically dependent if there exists \(0 \neq H(Z_1, Z_2, \cdots, Z_m) \in k[[Z_1, Z_2, \cdots, Z_m]] \) such that
\[
H(f_1(x_1, x_2, \cdots, x_n), f_2(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n)) = 0.
\]
If \(f_1, f_2, \cdots, f_m \) are not analytically dependent then they are said to be analytically independent. Given an infinite number \(f_1, f_2, \cdots \) of elements of \(L_n \), these elements are said to be analytically independent if every finite number of them are analytically independent. Professor Samuel asked me whether \(L_2 \) contains three analytically independent elements. The answer is given in the following

Proposition. *If \(n > 1 \) then \(L_n \) contains an infinite number of analytically independent elements.*

Proof. It is known that there exists an infinite number \(g_1(y), g_2(y), \cdots \) of formal power series in one variable \(y \) with coefficients in \(k \) which are algebraically independent over \(k \) (Lemma 1 of [4]). Let \(f_i(x_1, x_2, \cdots, x_n) = x_i g_i(x_1) \) for \(i = 1, 2, \cdots \). Let \(H(Z_1, Z_2, \cdots, Z_m) \) be an element of \(k[[Z_1, Z_2, \cdots, Z_m]] \) for which \(H(f_1(x_1, x_2, \cdots, x_n), f_2(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n)) = 0 \). Let \(H(Z_1, Z_2, \cdots, Z_m) = \sum_{j=0}^{\infty} H_j(Z_1, Z_2, \cdots, Z_m) \) where \(H_j(Z_1, Z_2, \cdots, Z_m) \) is a form of degree \(j \) in \(k[Z_1, Z_2, \cdots, Z_m] \). Then
\[
0 = H(f_1(x_1, x_2, \cdots, x_n), \cdots, f_m(x_1, x_2, \cdots, x_n))
= \sum_{j=0}^{\infty} x_1^j H_j(g_1(x_1), g_2(x_1), \cdots, g_m(x_1)).
\]
Therefore

Received by the editors August 23, 1955.
904 SHREERAM ABHYANKAR

\[H_j(g_1(x_1), g_2(x_1), \ldots, g_m(x_1)) = \text{the coefficient of } x_j^j \text{ in } H(f_1, \ldots, f_m) \]
\[= 0 \quad \text{for} \quad j = 1, 2, \ldots. \]

Since \(g_1(x_1), g_2(x_1), \ldots, g_m(x_1) \) are algebraically independent over \(k \),
we must have \(H_j(Z_1, Z_2, \ldots, Z_m) = 0 \) for \(j = 1, 2, \ldots \), i.e., \(H(Z_1, Z_2, \ldots, Z_m) = 0 \). Therefore \(f_1(x_1, x_2, \ldots, x_n), f_2(x_1, x_2, \ldots, x_n), \ldots \)
are analytically independent.

Let us remark that any two elements \(f(x_1) \) and \(g(x_1) \) of \(L_1 \) are
analytically dependent. If either \(f \) or \(g \) is zero then there is nothing
to prove and hence we may suppose that \(f(x_1) \neq 0 \neq g(x_1) \). First
assume that at least one of the two elements \(f(x_1) \) and \(g(x_1) \) is a
non-unit; say \(f(x_1) \) is a non-unit. Then by Proposition 3.5 of Chevalley
[2], \(L_1 \) is a finite module over \(k[[f(x_1)]] \) and hence \(g(x_1) \) is integral
over \(k[[f(x_1)]] \). Therefore there exists \(0 \neq H(X, Y) \in k[[X]][[Y]] \) with
\(H(f(x_1), g(x_1)) = 0 \). Now assume that \(f(x_1) \) and \(g(x_1) \) are both units.
Then \(f^*(x_1) = f(x_1) - af(x_1) \) is a non-unit, where \(a = f(0)/g(0) \). Hence
by the previous case, there exists \(0 \neq H(X, Y) \in k[[X]][[Y]] \) with
\(H(f^*(x_1), g(x_1)) = 0 \). Let \(H^*(X, Y) = H(X-aY, Y) \). Then \(H^*(x_1),
g(x_1) = 0 \). Also \(H^*(X, Y) \neq 0 \) since \(X \rightarrow X-aY, Y \rightarrow Y \) is an
automorphism of \(L_1 \).

2. A fractional power series. Let \(k \) be an algebraically closed field
of characteristic \(p \). If \(p = 0 \) then the theorem of Puiseux expansion is
valid, i.e., any polynomial \(F(Y) = y^n + f_1(X) Y^n - 1 + \cdots + f_n(X) \) with
\(f_i(X) \in k(X) \) can be factored in the form
\[F(Y) = \prod_{i=1}^{n} \left(Y - g_i(X^{1/m}) \right), \]
where \(m \) is some positive integer and where \(g_1(X), g_2(X), \ldots, g_n(X) \)
are in the quotient field of \(k[[X]] \), i.e., in the integral formal power
series field \(k((X)) \). If \(p \neq 0 \) then such a factorization is not always
possible. A typical example of this is given by Chevalley on p. 64 of
[3], namely:
\[F(Z) = Z^p - Z - X^{-1}. \]
If we force a factorization, we get the following generalized Puiseux
expansion (where the denominators of the indices of \(X \) are un-
bounded):
\[F(Z) = \prod_{i=0}^{p-1} \left(Z + i - \sum_{i=1}^{\infty} X^{-1/p} \right). \]
Or getting rid of the poles, we get alternatively:
THE COMPOSITUM OF ALGEBRAICALLY CLOSED SUBFIELDS

SHREERAM ABHYANKAR

Professor Igusa asked me the following question: Given a field K, is the compositum of all the (absolutely) algebraically closed subfields of K itself algebraically closed (of course, we are assuming that this compositum is not empty, i.e., that K contains the algebraic closure of its prime field)? We shall show in §1 that the answer to this question is in the negative in general. In §2, we shall give a special case in which the answer is in the affirmative.

1. The algebraic closures of $k(x)$, $k(y)$ and $k(x, y)$. Let k be an arbitrary algebraically closed field, $L = k(x, y)$ where x and y are algebraically independent over k, $L^* = $ an algebraic closure of L, $M = k(x)$, $N = k(y)$, $M^* = $ the algebraic closure of M in L^*, $N^* = $ the algebraic closure of N in L^*, and $K = $ the compositum of L^* and M^*. Let T be the compositum of all the algebraically closed subfields of K. Then $M^* C T$ and $N^* C T$ and hence $T = K$. We shall prove below that K cannot be algebraically closed. In fact we shall show that in some sense K is much nearer to L than it is to L^* and hence that K is far from being algebraically closed.

Embed $L = k(x, y)$ canonically into the formal power series field

Received by the editors August 23, 1955.