On an inequality for convex functions
HTML articles powered by AMS MathViewer
- by H. D. Brunk
- Proc. Amer. Math. Soc. 7 (1956), 817-824
- DOI: https://doi.org/10.1090/S0002-9939-1956-0081371-9
- PDF | Request permission
References
- Miriam Ayer, H. D. Brunk, G. M. Ewing, W. T. Reid, and Edward Silverman, An empirical distribution function for sampling with incomplete information, Ann. Math. Statist. 26 (1955), 641–647. MR 73895, DOI 10.1214/aoms/1177728423 H. D. Brunk, G. M. Ewing, and W. T. Reid, The minimum of a certain definite integral suggested by the maximum likelihood estimate of a distribution function, Bull. Amer. Math. Soc. Abstract 60-6-684.
- H. D. Brunk, G. M. Ewing, and W. R. Utz, Minimizing integrals in certain classes of monotone functions, Pacific J. Math. 7 (1957), 833–847. MR 87025 G. H. Hardy, J. E. Littlewood, and G. Pólya, Some simple inequalities satisfied by convex functions, Messenger of Math. vol. 58 (1928) pp. 145-152. —, Inequalities, Cambridge, 1934.
- E. M. Wright, An inequality for convex functions, Amer. Math. Monthly 61 (1954), 620–622. MR 64828, DOI 10.2307/2307675
Bibliographic Information
- © Copyright 1956 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 7 (1956), 817-824
- MSC: Primary 42.1X
- DOI: https://doi.org/10.1090/S0002-9939-1956-0081371-9
- MathSciNet review: 0081371