A NONMODULAR COMPACT CONNECTED TOPOLOGICAL LATTICE

DON E. EDMONDSON

The purpose of this note is to present an example of a nonmodular topological lattice which is compact and connected. The question of the existence of such a lattice was raised by Professor A. D. Wallace in a communication to me concerning his researches in topological lattices. The example will be a compact, connected portion of three space in its metric topology.

Let \(L = \{ (x, y, z) \in \mathbb{R}^3 \mid 0 \leq x \leq 1, 0 \leq y \leq 1, \text{ and } 0 \leq z \leq x(1-y) \} \) and define the relation \(\leq \) on \(L \) such that \((x_1, y_1, z_1) \leq (x_2, y_2, z_2) \) if and only if (1) \(x_1 \leq x_2 \), (2) \(y_1 \leq y_2 \), and (3) \(z_1 + x_1 y_1 \leq z_2 + x_2 y_2 \). Clearly \(\leq \) is a partial order on \(L \) and \(L \) is a compact, connected portion of \(\mathbb{R}^3 \) in its metric topology.

For \((x_1, y_1, z_1) \) and \((x_2, y_2, z_2) \) define \(a_1 = x_1 \cup x_2, b_1 = y_1 \cup y_2, \) and \(c_1 = [\bigcup_{i=1,2} (z_i + x_i y_i - a_i b_i)] \cup 0 \) where \(\cup \) is the lattice operation maximum on the real line under the natural order. Clearly \(0 \leq a_1 \leq 1 \) and \(0 \leq b_1 \leq 1 \). Since \(z_i \leq x_i(1-y_i) = x_i - x_i y_i, \) \(z_i + x_i y_i \leq x_i \leq a_1 \). Thus \(z_i + x_i y_i - a_1 b_1 \leq a_1 - a_1 b_1 = a_1 (1 - b_1) \). Clearly \(0 \leq a_1 (1 - b_1) \), thus \(0 \leq c_1 = [\bigcup_{i=1,2} (z_i + x_i y_i - a_1 b_1)] \cup 0 \leq a_1 (1 - b_1) \) and \((a_1, b_1, c_1) \in L \). Clearly \((a_1, b_1, c_1) \) is an upper bound of \((x_1, y_1, z_1) \) and \((x_2, y_2, z_2) \). If \((u, v, w) \in L \) is another upper bound, then \(u \geq x_i, v \geq y_i, \) and \(w + uv \geq z_i + x_i y_i \) for each \(i \). Immediately \(u \geq a_1, v \geq b_1, w + uv \geq a_1 b_1, \) and \(w + uv \geq (z_i + x_i y_i - a_1 b_1) + a_1 b_1 \). Thus \(u \geq a_1, v \geq b_1, \) and \(w + uv \geq c_1 + a_1 b_1 \); and \((a_1, b_1, c_1) \) is the least upper bound of \((x_1, y_1, z_1) \) and \((x_2, y_2, z_2) \).

Similarly for \((x_1, y_1, z_1) \) and \((x_2, y_2, z_2) \) define \(a_2 = x_1 \cap x_2, b_2 = y_1 \cap y_2, \) and \(c_2 = [\bigcap_{i=1,2} (z_i + x_i y_i - a_2 b_2)] \cap [a_2 (1 - b_2)] \) where \(\cap \) is the lattice operation minimum on the real line under the natural order. Clearly \(0 \leq a_2 \leq 1 \) and \(0 \leq b_2 \leq 1 \). Since \(z_i \geq 0, x_i \geq a_2 \geq 0, \) and \(y_i \geq b_2 \geq 0 \); then \(z + x_i y_i - a_2 b_2 \geq 0 \). Clearly \(a_2 (1 - b_2) \geq 0 \), thus

\[
a_2 (1 - b_2) \geq c_2 = [\bigcap_{i=1,2} (z_i + x_i y_i - a_2 b_2)] \cap [a_2 (1 - b_2)] \geq 0
\]

and \((a_2, b_2, c_2) \in L \). Clearly \((a_2, b_2, c_2) \) is a lower bound of \((x_1, y_1, z_1) \) and \((x_2, y_2, z_2) \). If \((u, v, w) \in L \) is another lower bound, then \(u \leq x_i, v \leq y_i, \) and \(w + uv \leq z_i + x_i y_i \) for each \(i \). Immediately \(u \leq a_2, v \leq b_2, \)

Received by the editors February 6, 1956.

1 This work was done under Contract N7-onr-434, Task Order III, Navy Department, Office of Naval Research.

1157
$w + uv \leq u(1 - v) + uv = u \leq a_2 = a_2(1 - b_2) + a_2b_2$, and $w + uv \leq (x_1 + x_2y - a_2b_2) + a_2b_2$. Thus $u \leq a_2$, $v \leq b_2$, and $w + uv \leq c_2 + a_2b_2$, and (a_2, b_2, c_2) is the greatest lower bound of (x_1, y_1, z_1) and (x_2, y_2, z_2).

Hence, under the partial order \leq, L is a lattice with $(x_1, y_1, z_1) \cup (x_2, y_2, z_2) = (a_1, b_1, c_1)$ and $(x_1, y_1, z_1) \cap (x_2, y_2, z_2) = (a_2, b_2, c_2)$. It is clear that the functions \cup and \cap from $L \times L$ to L are continuous functions in the metric topology, and that (L, \leq) is a topological lattice in this topology.

It remains to show that this lattice is not modular. Denote $\alpha = (0, 1, 0)$, $\beta = (1, 0, 0)$, $\gamma = (1, 0, 1)$, $0 = (0, 0, 0)$, and $I = (1, 1, 0)$. Then clearly $\beta < \gamma$, and the trivial computations imply that $\alpha \cap \beta = \alpha \cap \gamma = 0$ and $\alpha \cup \beta = \alpha \cup \gamma = I$. Thus 0, α, β, γ, I constitute a non-modular five lattice and L is not modular.