A NOTE ON THE SEPARATION OF CONNECTED SETS BY FINITE SETS

C. E. BURGESS

A connected set K is said to be separated by a subset H of K if $K - H$ is not connected. J. R. Kline has shown that if n is an integer greater than two and the plane continuum M is separated by every subset of M consisting of n points, then M is separated by some set consisting of $n - 1$ points [1, Theorem 5]. A stronger conclusion has been obtained by G. T. Whyburn for the case where M is a locally compact connected metric space. In fact, it follows from Whyburn's results that if every set consisting of n points separates the nondegenerate locally compact connected metric space M, then M is a Menger regular curve and contains uncountably many mutually exclusive pairs of points each pair of which separates M [2, p. 313]. It is the purpose of this note to present a proof of a related theorem for a connected topological space.

Theorem. If S is a nondegenerate connected topological space1 and D is an open set such that each infinite subset of D contains a finite set that separates S, then some pair of points in D separates S.

The following two lemmas will be used in the proof of this theorem.

Lemma 1. If S is a connected topological space, M_1 and M_2 are mutually exclusive closed sets such that M_2 does not separate S, and H is a connected subset of $S - (M_1 + M_2)$ such that some open set contains M_1 and lies in $H + M_1$, then $M_1 + M_2$ does not separate S.

Proof. Suppose $S - (M_1 + M_2)$ is the sum of two mutually separated sets X and Y, where X contains the connected set H. Since some open set lies in $H + M_1$ and contains M_1, it follows that no point of M_1 is a limit point of Y. This leads to the contradiction that $S - M_2$ is the sum of the two mutually separated sets $X + M_1$ and Y.

Lemma 2. If D is an open set in a connected topological space S, L is a finite subset of D consisting of more than two points such that $S - L$ is the sum of two mutually separated sets H and K, and no subset of D with fewer points than L separates S, then for each point p of $D - H$ the set $H + L - p$ is connected.

Presented to the Society, September 2, 1955; received by the editors July 22, 1955 and, in revised form, January 16, 1956.

1 The definition of a topological space given in [3] is used here.
Proof. Suppose there is a point p of $D \cdot H$ such that $H + L - p$ is the sum of two mutually separated sets X and Y. Since $S - P$ is connected, it follows that both X and Y intersect L. Let n denote the number of points in L. Since $n > 2$, it follows that one of the sets $X \cdot L + p$ and $Y \cdot L + p$ consists of less than n points. This involves a contradiction since each of these two subsets of D separates S.

Proof of theorem. Suppose that no pair of points in D separates S. Let L_1 be a subset of D such that (1) $S - L_1$ is the sum of two mutually separated sets H_1 and K_1 and (2) no set in D with fewer points than L_1 separates S. Let p_1 be a point of $K_1 \cdot D$. By Lemma 2, $K_1 + L_1 - p_1$ is connected.

Let L_2 be a subset of $D \cdot H_1$ such that (1) $S - L_2$ is the sum of two mutually separated sets H_2 and K_2, where K_2 contains the connected set $K_1 + L_1$, and (2) no set in $D \cdot H_1$ with fewer points than L_2 separates S. Let p_2 be a point of $D \cdot [K_2 - (K_1 + L_1)]$. By Lemma 2, $K_2 + L_2 - p_2$ is connected, and since $K_1 + L_1 - p_1$ is connected and K_1 is an open set lying in $K_1 + L_1$, it follows from Lemma 1 that $p_1 + p_2$ does not separate the connected set $K_2 + L_2$.

Let L_3 be a subset of $D \cdot H_2$ such that (1) $S - L_3$ is the sum of two mutually separated sets H_3 and K_3, where K_3 contains the connected set $K_2 + L_2$, and (2) no set in $D \cdot H_2$ with fewer points than L_3 separates S. Let p_3 be a point of $D \cdot [K_3 - (K_2 + L_2)]$. By Lemma 2, $K_3 + L_3 - p_3$ is connected, and since $K_2 + L_2 - (p_1 + p_2)$ is connected and K_2 is an open set lying in $K_2 + L_2$, it follows from Lemma 1 that $p_1 + p_2 + p_3$ does not separate the connected set $K_3 + L_3$.

By continuing this process indefinitely, a sequence of distinct points p_1, p_2, p_3, \ldots of D can be obtained such that, for each n, $p_1 + p_2 + \cdots + p_n$ does not separate the connected set $K_n + L_n$. Since each $H_n + L_n$ is connected, it readily follows that for each n, $p_1 + p_2 + \cdots + p_n$ does not separate S. This leads to the contradiction that no finite subset of the infinite set $p_1 + p_2 + p_3 + \cdots$ separates S.

Corollary. If n is a positive integer and the nondegenerate connected topological space S is separated by every set consisting of n points, then each open set contains a pair of points that separates S.

References

University of Utah