1. **Introduction.** Elementary divisor theory over the rational integers is classical; a treatment over an arbitrary algebraic number field can be found in Steinitz [8]. In this paper we are motivated by the following interpretation of Chevalley [4] and Asano [2]: if \(L_1 \) and \(L_2 \) are finite modules in a vector space \(V \) over a Dedekind ring \(\mathfrak{o} \) with quotient field \(F \), then \(L_1 \) and \(L_2 \) have a minimal basis in common. Simple examples show that in general this is not true for more than two modules \(L_1 \) and \(L_2 \), but in Theorem 4.2 we establish conditions under which every module in \(V \) has a minimal basis in common with a given set of modules \(L_0, \ldots, L_m \). The basis structure of modules under a direct sum decomposition of \(V \) is examined in Theorem 4.3.

The results outlined above are proved over any valuation ring \(\mathfrak{o} \); that they can be extended to an arbitrary Dedekind ring is a consequence of Theorem 5.4 which reduces the problem to a local one.

2. **Preliminaries.** Throughout this paper \(\mathfrak{o} \) will denote an integral domain with a unit and with quotient field \(F \); further restrictions will be placed on \(\mathfrak{o} \) in the following paragraphs. The modules \(L \) considered will be torsion-free \((\alpha X = 0 \text{ with } \alpha \in \mathfrak{o}, X \in L, \text{ implies } \alpha = 0 \text{ or } X = 0)\), finitely generated, and of finite rank; hence [2; 4; 6] each \(L \) has a replica in a finite dimensional \(F \)-space \(V \); we will always assume that the modules under consideration are contained in such a vector space \(V \); \(n \) will denote the dimension of this vector space; the subspace of \(V \) that is spanned by \(L \) will be written \(F L \) and we have rank \(L = \dim F \cdot L \leq \dim V = n \).

In addition all modules will have at least one minimal basis in \(V \)—that is, a basis \(\{\xi\} \) for \(V \) and (possibly zero) ideals \(a_i \) in \(F \) such that \(L = a_0 \xi_1 + \cdots + a_n \xi_n \); such a basis is known to exist for finitely generated modules in the following case:

Theorem 2.1. Let \(F \) be such that every finitely generated nonzero \(\mathfrak{o} \)-ideal is invertible. If \(L \) is a finitely generated \(\mathfrak{o} \)-module in \(V \) and if \(\xi_1, \ldots, \xi_n \) is any basis for \(V \), then there exist (finitely generated) ideals \(a_i \) and a basis \(\eta_1, \ldots, \eta_n \) for \(V \) such that \(L = \sum a_i \eta_i \).

This is proved in Satz 1 of [2] and the proof found there, though given for Dedekind rings, applies to fields of the above type; it is not necessary to assume that rank \(L = n \). Note that the number of nonzero \(a_i \) is equal to the rank of \(L \). Compare the proofs in [4; 6].
If we say that a result $P(n, m)$, where n and m are non-negative integers, is proved by double induction we mean

\begin{align*}
(2.1) & \quad P(0, m) \quad \text{and} \quad P(n, 0) \quad \text{hold for all } n \text{ and } m, \\
(2.2) & \quad P(n, m - 1) \quad \text{and} \quad P(n - 1, m) \Rightarrow P(n, m).
\end{align*}

One notational matter: we will denote the running indices in a summation by Greek letters, fixed indices by Roman or Gothic letters.

3. **Minimal bases for L.** In this section we investigate which bases in V qualify as minimal bases for L. The ring \mathfrak{o} is quite general but it is assumed that L is a direct sum of \mathfrak{o}-ideals of F,

\[(3.1) \quad L = a_1 \xi_1 + \cdots + a_n \xi_n.\]

Let us introduce the \mathfrak{o}-module

\[(3.2) \quad M = b_1 \eta_1 + \cdots + b_n \eta_n,\]

the b_i being \mathfrak{o}-ideals and $\{\eta\}$ being another basis for V connected with $\{\xi\}$ by the equations

\[(3.3) \quad \eta_i = \sum a_{i\lambda} \xi_\lambda, \quad \xi_j = \sum b_{j\mu} \eta_\mu.\]

Lemma 3.1. $L \subseteq M$ if and only if $b_i a_j \subseteq b_i$; $L = M$ if and only if $b_i a_j \subseteq b_i$ and $a_i b_j \subseteq a_i$; for all i and j.

Proof. It suffices to prove the first part of the lemma. Substituting (3.3) in (3.1) we see that $L \subseteq M$ is equivalent to $\sum a_i (\sum b_{i\lambda} \eta_\lambda) \subseteq \sum b_i \eta_i$; that is, $a_i b_j \subseteq b_i$ for all i and j.

Lemma 3.2. The basis $\{\eta\}$ is a minimal basis for L if and only if $a_{ij} b_{jk} \subseteq a_i$, for all i, j, k.

Proof. The necessity is an immediate consequence of Lemma 3.1: for if $a_{ij} \neq 0$, then $b_j a_i \subseteq b_j \subseteq a_i^{-1}$. To prove the sufficiency we introduce the ideals $b_i = \sum b_{i\lambda} a_\lambda$ and then define M by means of equation (3.2). Then $L = M$ (again by Lemma 3.1) and so $\{\eta\}$ is a minimal basis for L.

Lemma 3.3. If $L = M$ then $a_{ij} b_j \subseteq a_i$ and $\det \{a_{ij}\} \prod b_i = \prod a_i$; conversely, if these conditions are satisfied and if the b_i are invertible, then $L = M$.

Proof. **Necessity.** It follows from Lemma 3.1 and the expansion

$\det \{a_{ij}\} \prod b_i = \prod a_i$. Similarly \(\prod b_i \geq \det \{b_{ij}\} \prod a_i\). The remark $\det \{a_{ij}\} = (\det \{b_{ij}\})^{-1}$ completes the proof of the necessity.
Sufficiency. Let a_{ij} denote the cofactor of a_{rs}. Then $a_{ij}' = \sum \pm a_{ir} \cdots a_{nr}$, the first subscript avoiding r, the second s. Hence $a_{ij}' a_{rs}' \subseteq \prod a_{ik} b_{kj}' = \det \{a_{ij}\}$ and so $b_{rs} a_{ij} \subseteq b_{ij}$. The result follows from Lemma 3.1.

Remark. It follows from the previous lemma that if L and M are isomorphic, then $\prod a_{ik}$ and $\prod b_{kj}$ are in the same ideal class. Compare [6].

Lemma 3.4. Suppose that $L = M$ and let the bases $\{\xi\}$ and $\{\eta\}$ have the property that $F\xi_{m+1} + \cdots + F\xi_n = F\eta_{m+1} + \cdots + F\eta_n$ for some m, $0 \leq m \leq n - 1$. Then $a_{m+1}\xi_{m+1} + \cdots + a_n\xi_n = b_{m+1}\eta_{m+1} + \cdots + b_n\eta_n$.

Proof. The given restrictions ensure that all entries a_{ij} and b_{ij} are zero if $i \leq m$ and $j \geq m + 1$. Then $\{a_{ij}\}_{i,j \geq m+1}$ has $\{b_{ij}\}_{i,j \geq m+1}$ as its inverse. But a_{ij} and b_{ij} satisfy the conditions of Lemma 3.1 for all i,j and hence for $i,j \geq m+1$. Q.E.D.

We conclude this section with some remarks on the multiplication of modules by nonzero scalars $t \in F$. (a) $t \cdot L$ is again an σ-module in V. (b) If $\{L_\lambda\}$ is a collection of σ-modules in V and if $\{\lambda\}$ is a corresponding collection of scalars, then the L_λ have a basis $\{\xi\}$ in common if and only if all the $L_\lambda \cdot L_\lambda$ have the same minimal σ-basis in common. (c) If σ is a valuation ring or a Dedekind ring, there are nonzero scalars t_1, t_2 such that $t_1 \cdot L \subseteq M$ and $t_2 \cdot L \supseteq M$, provided that L and M are both of rank n (Lemma 3.1).

4. Local theory. The ring σ is now taken to be a valuation ring with quotient field F: σ is an integral domain such that for any α in F, either $\alpha \in \sigma$ or $\alpha^{-1} \in \sigma$. Associated with σ is a valuation $|\alpha|$, $\alpha \in F$, with values in an ordered multiplicative group $[1,7]$. We denote the maximal prime ideal in σ with the letter p. Observe that all finitely generated σ-ideals are principal and hence invertible. All modules will be finitely generated and hence of the form of equation (3.1) with the a_i principal by Theorem 2.1. Hence there is a basis for L in which

$$L = (p_1)\xi_1 + \cdots + (p_n)\xi_n, \quad p_i \in F;$$

putting $\xi' = p_i \xi_i$ we see that we can take $L = \sum a_i\xi'$ if desired. Furthermore, if $L = \sum b_i\eta_i$ is another representation in a minimal basis $\{\eta\}$, then the b_i must all be principal.

Lemma 4.1. Let $L_i = \sum a_i\xi_i = \sum b_i\eta_i$ be modules in V, $0 \leq j \leq m$, and let $L_0 = \sum a_i\xi_i = \sum b_i\eta_i$. Then there is a reordering of the $\{\eta\}$ in which $a_{ij} = b_{ij}$ for all i,j.

Proof. By induction to n. In the notation of (3.3), $\{a_{ij}\}$ must be
unimodular. Now \(\sum a_{1k}b_{1k} = 1 \); therefore there is a \(k \) for which \(|a_{1k}| = 1 = |b_{1k}| = |a_{1k}| \). Interchanging \(\eta_1 \) and \(\eta_k \) we have

\[
|a_{11}| = 1 = |b_{11}|
\]

Then \(a_{11}b_{11} \subseteq a_{1j} \) by Lemma 3.1 and so \(b_{1j} \subseteq a_{1j} \). Similarly \(a_{1j} \subseteq b_{1j} \). Hence

\[
a_{1j} = b_{1j}
\]

Now \(a_{1j}b_{1j} \subseteq a_{1j} \) together with (4.2) and (4.3) implies that \(a_{1k}a_{1j}^{-1}b_{1j} \subseteq b_{1j} \) and therefore \(\sum b_{1j}\eta_k = b_{1j}\eta_1 + \sum b_{1j}(\eta_k - a_{1k}a_{1j}^{-1}\eta_1) \). But \((\eta_k - a_{1k}a_{1j}^{-1}\eta_1) \subseteq F\xi_2 + \cdots + F\xi_\lambda \) for \(\lambda \geq 2 \); hence \(\sum b_{1j}(\eta_k - a_{1k}a_{1j}^{-1}\eta_1) = \sum a_{1j}\xi_\lambda \), with \(\lambda \geq 2 \), in virtue of Lemma 3.4. Induction completes the proof.

Note. In the case \(m = 1 \) the previous lemma expresses the “uniqueness of the elementary divisors.”

Theorem 4.2. Let \(L_j, 0 \leq j \leq m, \) be given rank \(n \) modules in \(V \). Then every rank \(n \) module \(K \) in \(V \) has a minimal basis \(\{x^k\} \) which is also a minimal basis for all the \(L_j \) if and only if either \(tL_j \supseteq L_i \) or \(tL_j \supseteq L_i \) holds for all \(i, j \) and all scalars \(t \in F \).

Proof. Sufficiency. By double induction. (2.1) is true by the elementary divisor theorem which holds for valuation rings. We must prove (2.2).

By the induction and (4.1) we can write \(L_0, \ldots, L_{m-1} \) and \(L_m \) in a common minimal basis such that \(L_0 = \sum a_{0\ell}x_\ell, L_j = \sum (p_{\lambda j})x_\lambda, \) the \((p_{\lambda j}) \) being principal ideals in \(F \). By considering \(tL_j \) if necessary we can make the further assumption that \(L_j \subseteq L_0 \) and \(L_0 \not= \pi^{-1}L_j \supseteq L_0 \) for any \(\pi \in \mathfrak{p}, 0 \leq j \leq m \). Reordering \(L_1, \ldots, L_m \) we obtain \(L_0 \supseteq L_1 \supseteq L_2 \cdots \supseteq L_m \); hence

\[
|p_{\lambda m}| \leq |p_{\lambda, m-1}| \leq \cdots \leq |p_{\lambda 0}| = 1, \quad (p_{\lambda m}) = \mathfrak{p} \text{ or } 0.
\]

Let \(\gamma(\lambda) \) denote the number of \(p \)'s with absolute value 1 in this inequality.

Let \(K \) be of the form \(\sum b_{1\eta}x_\eta \) with \(\xi_1 = \sum b_{1k}\eta_k \). By rearranging \(\{x_\ell\} \) and \(\{\eta_j\} \) we can assume that

\[
|b_{11}| = \max |b_{1\lambda}|, \quad |b_{1\lambda}| = |b_{11}| \Rightarrow \gamma(1) \geq \gamma(\lambda').
\]

Now define \(H_1 = \sum b_{1\lambda}b_{11}^{-1}\eta_\lambda \) and \(\Xi_1 = (\xi_1 - b_{11}b_{11}^{-1}\xi_1) \). Then \((p_{1j})\xi_1 + (p_{\lambda j})\xi_1 = (p_{1j})\xi_1 + (p_{\lambda j})\Xi_1 \), since \(|b_{11}b_{11}^{-1}| < 1 \) implies \(|p_{1j}b_{11}b_{11}^{-1}| \leq |p_{1j}| \), while if \(|b_{11}b_{11}^{-1}| = 1 \), then \(\gamma(\lambda) \leq \gamma(1) \) implies \(|p_{\lambda j}| \leq |p_{1j}| \). Hence \(L_j = (p_{1j})\xi_1 + L'_j \) where \(L'_j = \sum (p_{\lambda j})\Xi_1 \). Since \(|b_{11}b_{11}^{-1}| \leq 1 \), we must have \(K = \mathfrak{h}H_1 + K' \) where \(K' = \mathfrak{h}\Xi_2 + \cdots + \mathfrak{h}\eta_n \). But \(F\xi_1 = FH_1 \).
and \(\sum_{k} F \Xi_k = F \eta_0 + \cdots + F \eta_0 \) by definition of \(\Xi_k \) and \(\Xi_0 \). In addition \(L_{i+1} \subseteq L_i \) and \(L_{j+1} \supseteq \mathfrak{p} L_j \) by (4.4). Applying the induction again we see that \(L_j', 0 \leq j \leq m \), and \(K' \) have a minimal basis \(\{ \omega \} \) in common. Hence \(\xi_1, \omega_2, \cdots, \omega_0 \) is a minimal basis for \(L_j, 0 \leq j \leq m \), and \(K \). This proves (2.2) and hence establishes the induction.

Necessity. Given any pair \(L_i, L_j \) there is a minimal basis \(\{ \xi \} \) such that \(L_i = \sum \delta \xi_k \) and \(L_j = \sum \delta \xi_k \) by the elementary divisor theorem. Hence if the given conditions on the \(L_{ij}, 0 \leq j \leq m \), do not hold there must be a pair, \(L_0 \) and \(L_1 \) say, such that \(L_0 = \sum \delta \xi_k \) and \(tL_1 = (p) \xi_1 + \cdots + (p) \xi_0 \) with \(p \in \mathfrak{p} \) and \(|p| < |\tau| < 1 \), for some \(\tau \in \mathfrak{p} \). By a change of notation let us refer to \(tL_1 \) as \(L_1 \). Now define a new basis \(\{ \eta \} \) for \(V \) by the equations \(\{ \eta \} B = \{ \xi \} \) where

\[
(4.6) \quad \xi_1 = \eta_1, \quad \xi_2 = \pi \eta_1 + p \eta_2, \quad \xi_i = \eta_i, \quad j > 2.
\]

Put \(K = \sum \delta \eta_k \). Contention: \(L_0, L_1 \) and \(K \) do not have a common minimal basis.

Suppose that the contrary is true and let their common minimal basis be

\[
(4.7) \quad \{ \xi \} = \{ \xi \} C = \{ \xi \} B C.
\]

Put \(C = \{ c_{ij} \} \) and \(C^{-1} = \{ d_{ij} \} \). Then the first row and \(k \)th column of \(BC \) has entry \((c_{1k} + \pi c_{2k}) \) while the \(k \)th row and second column of \((BC)^{-1} \) has entry \((d_{k2} - \pi d_{k1})p^{-1} \). Now apply Lemma 3.2 (i) to \(L_0 \): \(c_{1d} d_{k1} \in \mathfrak{p} \) all \(i, j, k \); (ii) to \(L_1 \): \(c_{1d} d_{k1} \in (p) \) for all \(k \); (iii) to \(K \): \(c_{1d} d_{k1} - c_{2d} d_{k2} \in \mathfrak{p} \). Now \(c_{1d} d_{k1} - c_{2d} d_{k2} \in (p) \) by (i) and (ii) and so either \(c_{1d} d_{k1} \in \mathfrak{p} \) or \(c_{2d} d_{k2} \in \mathfrak{p} \) and hence both must be in \(\mathfrak{p} \) by (iv). Hence

\[
1 = \sum c_{1d} d_{k1} \in \mathfrak{p}
\]

and this is a contradiction. Q.E.D.

Remark. There is a different way of stating Theorem 4.2—by assuming that \(\tau.0 = V \) but dropping the conditions on the ranks of the \(L_{ij}, 0 \leq j \leq m \), and on \(K \).

Sufficiency. It is easy to see that the conditions of the theorem guarantee that all \(L_{ij} \) must be of the same rank and therefore span \(V \). If in addition rank \(K = n \), the proof is as before. If this is not so, write \(K = 0 \cdot \eta_1 + a_2 \eta_2 + \cdots + a_n \eta_n \); instead of (4.5) we can arrange to have

\[
|b_{11}| = \max |b_{1k}|, \quad |b_{1k}| = |b_{11}| \Rightarrow \gamma(1) \geq \gamma(\lambda)
\]

by permuting the \(\{ \xi \} \) only. The rest of the proof is as before.

Necessity. If all \(L_{ij}, 0 \leq j \leq m \), are of rank \(n \) the previous proof is valid. If not, we can take \(L_0 = \sum \delta \xi_k \) and \(L_1 = 0 \cdot \xi_1 + \delta \xi_2 + a_2 \xi_2 + \cdots + a_n \xi_n \) by the elementary divisor theorem; put \(K = 0(\xi_1 + \pi^{-1} \xi_0) \) where
Then it is easy to see (e.g. by using Theorem 2.1 and Lemma 3.4) that L_0, L_1 and K do not have a common minimal basis.

Theorem 4.3. If L_j, $0 \leq j \leq m$, are modules in V having a minimal basis in common and if each L_j has a decomposition $L_j = L_j' + L_j''$ corresponding to a fixed direct sum decomposition $V = V' + V''$, then the L_j' (resp. L_j'') have a common minimal basis in V' (resp. V'').

First we prove the following special case.

Lemma. The theorem is true if $FL_0 = V$.

Proof of Lemma. By double induction. (2.1) is true. We must prove (2.2). By the induction we have

\[
(4.8) \quad L_j' = \sum_{\alpha=1}^{p} (p_{j\alpha})\xi_\alpha \subseteq V', \quad L_j'' = \sum_{\alpha=1}^{n} (p_{j\alpha})\xi_\alpha \subseteq V'',
\]

with $L_0 = \sum_\alpha \xi_\alpha$, that is $p_{0\alpha} = 1$ for all α. Let $\{\xi\}$ be a minimal basis common to all the L_j, $0 \leq j \leq m$; there is no loss of generality in taking

\[
(4.9) \quad L_0 = \sum_\alpha \xi_\alpha, \quad L_j = \sum (p_{j\alpha})\xi_\alpha, \quad L_m = \sum_\alpha (p_{m\alpha})\xi_\alpha,
\]

If $\xi = \sum c_\alpha \xi_\alpha$, then $\{c_\alpha\}$ must be unimodular and we can permute $\{\xi\}$ as in Lemma 4.1 until $|c_{11}| = 1 = |d_{11}|$, interchange V' and V'' if necessary, and then permute ξ_2, \cdots, ξ_n until

\[
(4.10) \quad \sum (p_{\alpha j})\xi_\alpha = L_j = \sum (p_{\alpha j})\xi_\alpha, \quad 0 \leq j \leq m - 1,
\]

\[
(4.11) \quad |c_{11}| = 1, \quad c_{\alpha \beta} p_{j \alpha} \in (p_{j \beta}), \quad 0 \leq j \leq m - 1.
\]

Note that with a corresponding change of notation, (4.8) and (4.9) are preserved.

Now put $Z_1 = \xi_1, \quad Z_\alpha = (\xi_\alpha - c_{\alpha 1} c_{11}^{-1} \xi_1), \quad \Xi_1 = \sum c_{\alpha 1} c_{11}^{-1} \xi_\alpha, \quad \Xi_\alpha = \xi_\alpha$ and then write ξ and ξ instead of Z and Ξ. In virtue of (4.11) and these substitutions, (4.8), (4.9) and (4.10) are still valid and

\[
(4.12) \quad \xi_1 = c_{11} \xi_1 + \sum_{\alpha=1}^{n} c_{1\alpha} \xi_\alpha, \quad \xi_\alpha = \sum_{\alpha=2}^{n} c_{\alpha \alpha} \xi_\alpha, \quad i > 1.
\]

It follows from the direct sum decomposition of L_m and (4.9) that

\[
\sum_{\alpha=1}^{n} c_{\alpha 1} \xi_\alpha \subseteq L_m and c_{11} \xi_1 \subseteq L_m. Hence we see from (4.9) and (4.12) that L_m = \sum_\alpha (p_{m\alpha})\xi_\alpha + \sum_\alpha (p_{m\alpha})\xi_\alpha, 0 \leq j \leq m - 1, have ξ_2, \cdots, ξ_n as a common minimal basis in virtue of Lemma 3.4 and (4.12). Contention: there is a direct sum decomposition of $\sum_{\alpha=1}^{n} (p_{m\alpha})\xi_\alpha$ corresponding to $\sum_{\alpha=1}^{n} F_\xi_\alpha \oplus \sum_{\alpha=1}^{n} F_\xi_\alpha$: for $L_m = L'_m + L''_m$;
and \(L'_m = \alpha \xi_1 + \sum_a \alpha_a \eta_a \) with \(\eta_a = \alpha_1 \xi_1 + \cdots + \xi_1 \) in virtue of Theorem 2.1; but \(\alpha_1 \alpha_a \subseteq \theta \) since \(\alpha_m \subseteq \alpha_0 \); hence we can assume that \(\alpha_1 = 0, 2 \leq a \leq q \); then by Lemma 3.4, \(\sum_a (\beta_a) \xi_a = \sum_a \alpha_a \eta_a + \alpha' L''_m \). This proves the contention. Induction completes the proof. Q.E.D.

Proof of Theorem. By double induction. By applying the elementary divisor theorem to \(L'_0 \) (resp. \(L'_0'' \)) and \(L'_1 \) (resp. \(L'_1'' \)) we can write

\[
\begin{align*}
L_0 &= \alpha \xi_1 + \cdots + \alpha \xi_s + \cdots + \alpha \xi_t, \\
L_1 &= \beta_1 \xi_r + \cdots + \beta_1 \xi_t + \alpha \xi_{t+1} + \cdots + \alpha \xi_s
\end{align*}
\]

with \(s \leq n \) and \(\{ \xi \} \) such that either \(\xi_1 \in V' \) or \(\xi_1 \in V'' \); there is no loss of generality in assuming that \(\theta_0 \subseteq \sigma, r \leq \lambda \leq t \). On the other hand an easy computation shows that we can assume that equations (4.13) are true if we replace \(\{ \xi \} \) by \(\{ f \} \) where \(\{ f \} \) is a minimal basis common to all \(L_j, 0 \leq j \leq m \). Define \(K \) invariantly as the smallest \(\alpha \)-module containing \(L_0 \) and \(L_1 \). Then

\[
\sum \alpha \xi_n = K = \sum \alpha \lambda.
\]

Case I. \(F \cdot K = V \). Then \(K, L_0, L_1, \ldots, L_m \) satisfy the conditions of the lemma; the theorem therefore holds for these modules; hence it holds for \(L_j, 0 \leq j \leq m \).

Case II. \(F \cdot K \neq V \). By the induction \(K, L_2, L_3, \ldots, L_m \) have a common basis \(\{ \eta \} \) such that \(K = \sum \alpha \eta \) and either \(\eta_1 \in V' \) or \(\eta_1 \in V'' \) for \(1 \leq \lambda \leq n \). By means of Lemma 3.4 we see that \(L_0, L_1 \) and \(\sum_1 a_k \eta_k, 2 \leq j \leq m \), must have \(\xi_1, \ldots, \xi_t \) as a common minimal basis and hence have a basis \(\omega_1, \ldots, \omega_n \) with the required property. Then \(\omega_1, \ldots, \omega_n, \eta_{t+1}, \ldots, \eta_n \) is the basis required. This completes the proof of the theorem.

Lemma 4.4. Let \(L_j \) be rank \(n \) modules in \(V \) and let \(X \) be any vector in \(L_0 \). Then there is a nonzero \(\alpha \) (independent of \(X \)) such that if \(\{ \xi \} \) is any basis for all \(L_j \) with \(L_0 = \sum a \xi_n \), then so is \(\xi_1, \ldots, \xi_{i-1}, \xi_i + \alpha' X, \xi_{i+1}, \ldots, \xi_n \) where \(|\alpha'| \leq |\alpha| \).

Proof. Write \(L_j = \sum a_j \xi_n \) and \(X = \sum a_j \xi_n \) where \(\alpha = \sum \alpha \in \theta; \) choose \(\alpha \in \theta \) such that \(\alpha \in a_{j, k} \alpha_m \) for all \(\lambda, \mu, j \). Then

\[
L_j = a_{j, k} \xi_1 + \cdots + a_{j, k} (\xi_i + \alpha' X) + \cdots + a_{n, k} \xi_n.
\]

5. **Dedekind rings.** In this section we assume that classical ideal theory holds in \(F/\theta \), that is to say the ideals with bounded denominator form a group under multiplication. We denote by \(\theta_p \) the valuation ring corresponding to the prime ideal \(\theta_p \); the same letter \(p \) will be used
for the maximal prime ideal in \(\mathfrak{p} \). The \(\mathfrak{p} \)-ideals in \(F \) are all powers of \(\mathfrak{p} \) and the value group is discrete and real. If \(a = \mathfrak{p}^r \cdots \) is a factorization of the \(\mathfrak{o} \)-ideal \(a \) we define \(\mathfrak{o}(a) \) as the \(\mathfrak{p} \)-ideal \(\mathfrak{p}^r \). All modules will be finitely generated and hence of the form (3.1) with the \(a_i \) of bounded denominator and invertible. Note that if \(\xi_1, \cdots, \xi_n \) is any basis for \(V \), then by Theorem 2.1 there is a minimal basis \(\eta_1, \cdots, \eta_n \) for \(L \) such that

\[
\eta_i = c_{i1}\xi_1 + \cdots + c_{i-1}\xi_{i-1} + \xi_i, \quad c_{ij} \in F.
\]

If \(L = \sum a_\lambda \xi_\lambda \) put \(\mathfrak{o}(L) = \sum \mathfrak{o}(a_\lambda) \xi_\lambda \): that this is well-defined is an immediate consequence of Lemma 3.1. By taking \(\xi_\lambda' = a_\lambda \xi_\lambda \) instead of \(\xi_\lambda \) it is always possible to choose a basis for \(L \) such that \(\mathfrak{o}(L) = \sum \mathfrak{o} \xi_\lambda' \) at a given finite set of primes \(\mathfrak{p} \) provided that rank \(L = n \). By means of Lemma 3.1 and the unique factorization into primes it is easy to prove the following result.

Lemma 5.1. \(L = M \) if and only if \(\mathfrak{o}(L) = \mathfrak{o}(M) \) at all \(\mathfrak{p} \). In any case, if \(F \cdot L = F \cdot M \), then \(\mathfrak{o}(L) = \mathfrak{o}(M) \) holds at all but a finite number of primes \(\mathfrak{p} \).

Lemma 5.2. Let \(L_i, 0 \leq j \leq m \), be rank \(n \) modules in \(V \) and let \(W \) be an \(r \) dimensional subspace of \(V \). If \(\mathfrak{o}(L_j), 0 \leq j \leq m \), have a common minimal basis \(\{ \eta^p \} \) such that \(\eta^p_1, \cdots, \eta^p_r \in W \) at each \(\mathfrak{p} \) in a finite set of primes \(S \), then there is a basis \(\{ \xi \} \) for \(L_0 \) which is also a basis for all the \(\mathfrak{o}(L_j), \mathfrak{p} \in S \), and such that \(\xi_1, \cdots, \xi_r \in W \).

Proof. By induction on \(n \). All bases (whether defined or derived) that appear in the proof will be such that their first \(r \) elements span \(W \). Let us write \(L_0 = \sum a_\lambda \xi_\lambda \) and \(\eta^p_\lambda = \sum a^p_\lambda \xi_\lambda \); we can assume that \(\mathfrak{o}(a_\lambda) = \mathfrak{p} \) and \(\mathfrak{o}(L_0) = \sum \mathfrak{o} \eta^p_\lambda \) at all \(\mathfrak{p} \in S \). Apply the approximation theorem to the entries of the matrices \(\{ a^p_\lambda \} \) in such a way that \(a_{ij} \) approximates to \(a^p_{ij} \) with \(a_{ij} = 0 \) whenever \(a_{ij}^p = 0 \) is true for all \(\mathfrak{p} \in S \); then in virtue of Lemma 4.4 a sufficiently high approximation yields a basis \(\eta_j = \sum a_\lambda \xi_\lambda \) such that

\[
\mathfrak{o}(L_0) = \sum \mathfrak{o} \xi_\lambda, \quad \mathfrak{o}(L_j) = \sum \mathfrak{o} \eta_\lambda, \quad \text{all } \mathfrak{p} \in S.
\]

Now write each \(L_j = \sum a_\lambda \xi_\lambda \) with \(\xi_\lambda \in F \eta_1 + \cdots + F \eta_n \), by (5.1). Then all the modules \(\sum a_\lambda \xi_\lambda \) have \(\eta_1, \cdots, \eta_{n-1} \) as a common minimal basis at each \(\mathfrak{p} \in S \), in virtue of Lemma 3.4; by the induction there is a basis (and we continue to call it \(\{ \xi \} \)) for \(L_0 \) such that \(\eta_1, \cdots, \eta_n \) is a basis for the \(\mathfrak{o}(L_j), \mathfrak{p} \in S \), where \(\eta_i = \xi_i \) for all \(i \leq n - 1 \); we can assume that

\[
\sum \mathfrak{o} \xi_\lambda = \mathfrak{o}(L_0) = \sum \mathfrak{o} \eta_\lambda, \quad \mathfrak{p} \in S.
\]
Suppose that $\eta_n = \alpha_1 \xi_1 + \cdots + \alpha_n \xi_n$; then $|\alpha_1| \leq 1$ and $|\alpha_n| = 1$ at all $p \in S$; by suitably scaling η_n we can make the further assumptions

\[(5.4) \quad \alpha_i \in o, \quad \alpha_i \in a_{00} a_{00}^{-1} \quad \text{for all } i.\]

Let $\alpha, \alpha' \in o$ be such that $|\alpha|$, $|\alpha'|$ are arbitrarily small at $p \in S$, but either $|\alpha| = 1$ or $|\alpha'| = 1$ outside S; then g.c.d. $(\alpha, \alpha', \alpha_n) = 0$ and there must exist $\beta, \beta', \gamma \in o$ such that $a\beta + a'\beta' + \gamma \alpha_n = 1$; clearly γ must be a unit at all $p \in S$. Define

\[(5.5) \quad \xi_i = \xi_i, \quad i < n, \quad \xi_n = \alpha\beta \xi_n + \alpha'\beta' \xi_n + \gamma \eta_n.\]

Then $\xi_n = \sum_{i}^{-1} \gamma \alpha \xi_n + \xi_n$ and so $\{\xi\}$ is a basis for L_0. Since $|\alpha|$, $|\alpha'|$ can be made arbitrarily small at $p \in S$, we have $\{\xi\}$ as a basis for $p(L_j)$, $p \in S$, by Lemma 4.4. Q.E.D.

Lemma 5.3. If the assumptions of the previous lemma are satisfied at ALL primes p, then there is a common basis $\{\xi\}$ for all L_j, $0 \leq j \leq m$, such that $\xi_1, \cdots, \xi_n \in W$.

Proof. Let S be a finite set of primes such that $p(L_0) = p(L_j)$ if $p \in S$. Let $\{\xi\}$ be a basis having the properties of Lemma 5.2; then $p(L_0) = \sum p_{\alpha} \xi_\alpha = p(L_j)$ if $p \in S$, and $p(L_j) = \sum p_{\beta} \xi_\beta$ if $p \in S$. Define

\[a_{1j} = \prod_{p \in S} p_{\alpha_j} \prod_{p \in S} p_{\alpha_0}.\]

Then $L_j = \sum a_{1j} \xi_\lambda$ by Lemma 5.1.

Theorem 5.4. The modules L_j have a common minimal basis if and only if their local components $p(L_j)$ have a common minimal basis at all primes p, $0 \leq j \leq m$.

Proof. By double induction. By the elementary divisor theorem

\[L_0 = a_{10} \omega_1 + \cdots + a_{r \alpha} \omega_r + \cdots + a_{q \alpha} \omega_q,\]

\[L_1 = a_{11} \omega_1 + \cdots + a_{q1} \omega_q + \cdots + a_{s1} \omega_s.\]

We can assume that $a_{11} \subseteq a_{10}$, $r \leq \lambda \leq q$. Define K invariantly as the o-module generated by L_0 and L_1; then $K = \sum (a_{10} + a_{11}) \omega_1$.

Case I. Rank $L_j = n, 0 \leq j \leq m$. This follows from Lemma 5.3.

Case II. Rank $L_0 < n$, rank $L_j = n$, $1 \leq j \leq m$. By Lemma 5.3 we can express L_j, $1 \leq j \leq m$, in a common $\{\xi\}$ with ξ_1, \cdots, ξ_q spanning $F \cdot L_0$: $L_j = \sum a_{1j} \xi_\lambda$, $1 \leq j \leq m$. Then L_0 and $\sum a_{1j} \xi_\lambda$ have a common basis at all p in virtue of Lemma 3.4 and so by the induction they must have a common basis $\xi_1, \cdots, \xi_q, \xi_{q+1}, \cdots, \xi_n$ in the large. Then $\xi_1, \cdots, \xi_q, \xi_{q+1}, \cdots, \xi_n$ is the basis required.
CASE III. Rank $K = s < n$. Then if $\{\eta^p\}$ is a basis for $\mathfrak{p}(L_j), 0 \leq j \leq m$, it must also be a basis for $\mathfrak{p}(K)$; therefore by the induction K, L_2, \ldots, L_m have a common basis $\{\xi\}$; let us suppose that ξ_1, \ldots, ξ_s spans $F \cdot K$; then L_0, L_1 and $\sum a_0^j \xi^j$ have a common minimal basis at all p in virtue of Lemma 3.4; hence they have a basis ξ_1, \ldots, ξ_s in the large. Then $\xi_1, \ldots, \xi_s, \xi_{s+1}, \ldots, \xi_n$ is the basis required.

CASE IV. Rank $L_0 < n$, rank $L_1 < n$ and rank $K = s = n$. Then by (5.1) we can express each L_j, $2 \leq j \leq m$, in a basis whose successive elements are in $F\omega_n, F\omega_n + F\omega_{n-1},$ etc.; by Lemma 3.4 and the inductive hypothesis we see that we can assume that $L_j = \sum_{i=1}^{r-1} a_i \omega_j + \sum a_i \omega_n$, for $0 \leq j \leq m$.

Contention: we can arrange to have $\omega^p_j \in FL_0$ when $2 \leq j \leq m$. For each $\alpha \in \alpha_j$ we have $a \omega^p_j = \alpha \omega_j + \alpha \omega_{j+1} + \cdots + \cdots \in L_j$; at each p, $\mathfrak{p}(L_j)$ has a basis $\{\eta^p\}$ with $\eta^p_0, \ldots, \eta^p_n \in FL_0, \eta^p_n
\in FL_1$; and $\nu^p_m = \omega_n$ for $\mu \geq r$, by Lemma 3.4, hence

$$a \omega^p_j = \beta_j \eta^p_0 + \cdots + \beta \eta^p_n + \alpha \omega_{j+1} + \cdots + \alpha \omega_n,$$

hence $a \mu \omega_n \in \mathfrak{p}(L_j)$ holds for all $p, \mu \geq q + 1$; and so $a_j \mathfrak{p} \omega_n \subseteq L_j$. This proves the contention.

By the induction and Lemma 3.4 we can express $\sum_{i=1}^{r-1} a_i \omega_j + \sum a_i \omega_n, 0 \leq j \leq m$, in a common minimal basis ξ_1, \ldots, ξ_s. Then $\xi_1, \ldots, \xi_q, \omega_{q+1}, \ldots, \omega_n$ is the basis required. We have exhausted all possibilities and the theorem is now proved.

References

1. E. Artin, Algebraic numbers and algebraic functions, Princeton University, New York University, 1950.

University of Otago, New Zealand