DETERMINANTS OF HARMONIC MATRICES

J. S. MacNERNEY

This paper is concerned with extensions of a theorem by H. S. Wall (Theorem 3 of [3]): if \(M \) is a 2\(\times \)2 harmonic matrix and \(F \) corresponds to \(M \) then \(\det \ M = 1 \) only in case \(F_{11} = -F_{22} \).

As in [3] let \(H_n \) denote the class of \(n \times n \) harmonic matrices and \(\Phi_n \) the class of \(n \times n \) matrices \(F \) of complex-valued functions from the real numbers, continuous and of bounded variation on every interval, such that \(F(0) = 0 \). In [3] Wall has shown that the Stieltjes integral equation,

\[
M(s, t) = I + \int_s^t dF(u) \cdot M(u, t),
\]

defines a one-to-one correspondence \(M \sim F \) between \(H_n \) and \(\Phi_n \). In studying this correspondence in a more abstract setting, the present author [1] has obtained the continuous product (or "product integral") representation,

\[
M(s, t) = \prod_s^t \{ I + dF \} \quad \text{when} \quad M \sim F.
\]

By using this representation, we now have the following extension of Wall's theorem cited above:

Theorem 1. If \(M \) is in \(H_n \) and \(M \sim F \) then

\[
\det M(s, t) = \exp \left(\sum_1^n [F_{pp}(t) - F_{pp}(s)] \right).
\]

Proof. Let \(f = \sum_1^n F_{pp} \), and \(g \) be the function from the ordered real number pairs \(\{s, t\} \) defined by:

\[
\det \{ I + F(t) - F(s) \} = 1 + f(t) - f(s) + g(s, t).
\]

Let \(J \) be a number interval, \(s \) and \(t \) numbers in \(J \), and \(b \) a positive number.

If \(u \) and \(v \) are real numbers then \(g(u, v) \) is a sum of products of \(n \) factors, of which at least two have the form \(F_{ii}(v) - F_{ii}(u) \). Thus there exist a natural number \(N \) and a sequence \(\{ r_p, h_p, k_p \}_p \) such that if \(u \) and \(v \) are numbers in \(J \) then

Presented to the Society, November 19, 1955; received by the editors October 17, 1955, and, in revised form, December 9, 1955.
DETERMINANTS OF HARMONIC MATRICES

\[g(u, v) = \sum_{i=1}^{N} r_p(u, v) [h_p(v) - h_p(u)] [k_p(v) - k_p(u)], \]

where each \(r_p \) is a bounded function from \(J \times J \) to the numbers, each \(h_p \) is one of the \(F_{ij} \), and each \(k_p \) is one of the \(F_{ij} \). From the uniform continuity of the \(h_p \) on \(J \) and the bounded variation of the \(k_p \) on \(J \), it follows that there exists a positive number \(c \) such that if \(\{ u_i \}_{0}^{m} \) is a monotone number sequence and \(u_0 = s \) and \(u_m = t \) and \(|u_i - u_{i-1}| < c \) for \(i = 1, \ldots, m \) then \(\sum_{i=1}^{m} |g(u_{i-1}, u_i)| < b \): hence,

\[
\left| \prod_{i=1}^{m} \{ 1 + f(u_i) - f(u_{i-1}) \} - \det \prod_{i=1}^{m} \{ I + F(u_i) - F(u_{i-1}) \} \right| \\
\leq \sum_{i=1}^{m} |g(u_{i-1}, u_i)| \ \text{Exp} \left(\sum_{i=1}^{m} |f(u_i) - f(u_{i-1})| \right) \\
\quad + \sum_{i=1}^{m} |f(u_i) - f(u_{i-1}) + g(u_{i-1}, u_i)| \ \text{Exp}(b + 2 \sum_{i=1}^{m} \int_{s_i}^{u_i} |dF_{pp}|). \]

Formula (3) is now apparent, since \(\prod_{i=1}^{m} \{ 1 + df \} = \text{Exp} (f[t] - f[s]) \).

Remark. The formula (3) is a generalization of the well-known exponential form of the Wronskian of a fundamental set of solutions for an \(n \)th order linear differential equation.

It seems natural to ask for a similar result in the case of quasi-harmonic matrices [2]—the statement that the \(n \times n \) matrix \(M \) is \textit{quasi-harmonic} means that \(M \) is an \(n \times n \) matrix of complex-valued functions from the ordered pairs \(\{ s, t \} \) of real numbers, which, for each \(t \), are of bounded variation in \(s \) on every interval and which are quasi-continuous in \(t \) for each \(s \), and that, for each ordered triple \(\{ r, s, t \} \) of real numbers, \(M(r, s) \cdot M(s, t) = M(r, t) \) and

\[M(s, s) = \frac{1}{2} \left[M(s-, s) + M(s, s-) \right] \]

(4)

\[= \frac{1}{2} \left[M(s, s+) + M(s+, s) \right] = I. \]

Let \(QH_n \) denote the class of \(n \times n \) quasi-harmonic matrices and \(Q\Phi_n \), the class of \(n \times n \) matrices \(F \) of complex-valued functions from the real numbers, of bounded variation on every interval, such that

\[[F(r) - F(r-)]^2 = [F(r+) - F(r)]^2 = F(0) = 0 \quad \text{for each } r. \]
In [2] we have shown that (1), with mean integrals replacing the Stieltjes integrals used by Wall, defines a one-to-one correspondence \(M \sim F \) between \(QH_n \) and \(\Phi_n \) which extends the correspondence established by Wall in [3] and which is also determined by (2).

Theorem 2. If \(M \) is in \(QH_n \) and \(M \sim F \) and \(G \) is the "continuous part" of \(F \) then

\[
\det M(s, t) = \exp \left(\sum_{i} \left[G_{p_i}(t) - G_{p_i}(s) \right] \right).
\]

Proof. By the "continuous part" of \(F \) we mean (as in proof of Theorem 2.4 of [2]) an element \(G \) of \(\Phi_n \) such that, if \(r_1, r_2, \ldots \) is a simple number sequence such that if \(s \) is a number at which \(F \) is not continuous then there is a natural number \(k \) such that \(r_k = s \), there is a sequence \(F_1, F_2, \ldots \) of elements of \(QH_n \) such that

1. \(F_1 = G \) and, if \(j \) is a natural number and \([a, b]\) is a number interval which does not contain \(r_j \), then \(F_{j+1}(b) - F_{j+1}(a) = F_j(b) - F_j(a) \) and \(F_{j+1}(r_j) - F_{j+1}(r_j-) = F(r_j) - F(r_j-) \) and \(F_{j+1}(r_j+) - F_{j+1}(r_j) = F(r_j+) - F(r_j) \), and
2. \(F_k(s) \to F(s) \) as \(k \to \infty \) for each real number \(s \).

Let \(F_1, F_2, \ldots \) be such a sequence and \(M_k(s, t) = \prod \{ I + dF_k \} \) for each natural number \(k \).

If \(A \) is an \(n \times n \) matrix of complex numbers and \(A^2 = 0 \) then \(\det \{ I + A \} = 1 \). This may easily be seen as follows: let \(P \) be the function from the complex numbers defined by \(P(z) = \det \{ I + zA \} \); now \(P \) is a polynomial satisfying the identity \(P(z)P(-z) = 1 \), so that \(P \) has no zero; hence \(P \) is constant and its only value is \(P(0) \), which is 1.

Thus we see that \(\det M_k(s, t) = \det M_1(s, t) \) for \(k = 1, 2, \ldots \). The formula (6) now follows from Theorem 2.5 of [2] and Theorem 1 of the present paper.

Bibliography

University of North Carolina