INTEGRAL REPRESENTATIONS OF CYCLIC GROUPS OF PRIME ORDER

IRVING REINER

1. Elementary facts. In this paper we shall extend a result due to Diederichsen [2] on integral representations of cyclic groups of prime order, and shall simplify the proof thereof. Let \(\mathbb{Z} \) denote the ring of rational integers, \(\mathbb{Q} \) the rational field. If \(R \) is a ring, by a regular \(R \)-module we shall mean a finitely-generated torsion-free \(\mathbb{Z} \)-module.

Lemma 1 (Zassenhaus [9]). Let \(R \) be a regular \(\mathbb{Z} \)-module contained in a field \(K \), and suppose \(R \) contains a \(\mathbb{Q} \)-basis of \(K \). Then every irreducible regular \(R \)-module is \(R \)-isomorphic to an ideal in \(R \). Two ideals in \(R \) are \(R \)-isomorphic (as \(R \)-modules) if and only if they lie in the same ideal class.

Remark. In terms of matrix representations, this lemma implies that there is a one-to-one correspondence between classes (under unimodular equivalence) of irreducible \(\mathbb{Z} \)-representations of \(R \) and ideal classes of \(R \). A full set of inequivalent irreducible matrix representations is obtained by restricting the regular representation of \(R \) to a full set of inequivalent ideals in \(R \). In particular, let \(f(x) \in \mathbb{Z}[x] \) be irreducible, and set \(R = \mathbb{Z}[\theta] \) where \(\theta \) is a zero of \(f(x) \). Since every irreducible representation of \(R \) is described by \(\theta \rightarrow X \), where \(X \) is an integral nonderogatory solution of \(f(X) = 0 \), the number of unimodular classes of such matrix solutions coincides with the class number of \(\mathbb{Z}[\theta] \). (See [5; 8].)

Now let \(\mathfrak{o} \) be a Dedekind ring (see [4]) which is assumed to be a regular \(\mathbb{Z} \)-module. By Lemma 1, every irreducible regular \(\mathfrak{o} \)-module is \(\mathfrak{o} \)-isomorphic to an ideal in \(\mathfrak{o} \).

Lemma 2 (Steinitz [7], Chevalley [1]. This result can also be deduced from [6]). Every regular \(\mathfrak{o} \)-module is \(\mathfrak{o} \)-isomorphic to a direct sum \(\mathfrak{A}_1 \oplus \cdots \oplus \mathfrak{A}_n \) of ideals in \(\mathfrak{o} \). The \(\mathfrak{o} \)-rank \(n \) and the ideal class of \(\mathfrak{A}_1 \cdots \mathfrak{A}_n \) are the only invariants, and determine the module up to \(\mathfrak{o} \)-isomorphism.

Remark. Let \(f(x) \in \mathbb{Z}[x] \) be a monic irreducible polynomial, and let \(f(\theta) = 0 \). Assume that \(\mathbb{Z}[\theta] \) coincides with the ring of all algebraic
integers in $Q(\theta)$. Then $Z[\theta]$ is a Dedekind ring, and the lemma implies that every integral matrix X for which $f(X) = 0$, is integrally decomposable into a direct sum of irreducible matrices satisfying $f(X) = 0$.

Lemma 3. Let \mathfrak{e} and \mathfrak{B} be ideals in \mathfrak{o}. Then there exists an \mathfrak{o}-automorphism of $\mathfrak{o} \oplus \mathfrak{B}$ which maps $\mathfrak{e} \oplus \mathfrak{B}$ isomorphically onto $\mathfrak{o} \oplus \mathfrak{e} \mathfrak{B}$.

Proof. Since only ideal classes are involved, we may assume $\mathfrak{e} + \mathfrak{B} = \mathfrak{o}$. Choose $\mathfrak{e}_0 \subseteq \mathfrak{e}$, $\mathfrak{b}_0 \subseteq \mathfrak{B}$ such that $\mathfrak{e}_0 - \mathfrak{b}_0 = 1$. Then define an \mathfrak{o}-linear map $\phi: \mathfrak{o} \oplus \mathfrak{B} \to \mathfrak{o} \oplus \mathfrak{B}$ by means of

$$\phi(a, b) = (a + b, ab_0 + \mathfrak{e}_0 b), \quad a \in \mathfrak{o}, \ b \in \mathfrak{B}.$$

It is easily verified that ϕ is the desired \mathfrak{o}-automorphism of $\mathfrak{o} \oplus \mathfrak{B}$.

2. **Cyclic groups.** Let $G = \{g\}$ be a cyclic group of prime order p, and let $Z[g]$ be its group ring over the integers. We shall use the results of the previous section to classify all Z-regular $Z[g]$-modules. Define $s = 1 + g + \cdots + g^{p-1} \in Z[g]$. Let M be a Z-regular $Z[g]$-module, and define

$$(1) \quad M_s = \{m \in M: sm = 0\}.$$

We may then view M_s as a $Z[g]/(s)$-module, where (s) is the principal ideal generated by s. However, $Z[g]/(s) \cong Z[\theta]$, where θ is a primitive pth root of 1. Further, $Z[\theta]$ is a Dedekind ring, hereafter denoted by \mathfrak{o}.

Now we observe that

$$(2) \quad M_s \supseteq (g - 1)M \supseteq (\theta - 1)M_s,$$

all considered as \mathfrak{o}-modules. By Lemma 2, we may write

$$(3) \quad M_s = \mathfrak{o} \oplus \cdots \oplus \mathfrak{o} \oplus \mathfrak{A},$$

where n (the number of summands) and the ideal class of the ideal \mathfrak{A} in \mathfrak{o} are uniquely determined. Using (2), we find that as \mathfrak{o}-module,

$$(4) \quad (g - 1)M = \mathfrak{e}_1 \oplus \cdots \oplus \mathfrak{e}_{n-1} \oplus \mathfrak{e}_n \mathfrak{A},$$

with the \mathfrak{e}_i ideals in \mathfrak{o}. From the second inclusion in (2), we see that each \mathfrak{e}_i is either \mathfrak{o} or the principal prime ideal $(\theta - 1)$. By permuting the summands, and using Lemma 3 if necessary, we may then assume that

$$(5) \quad \mathfrak{e}_1 = \cdots = \mathfrak{e}_r = 0, \quad \mathfrak{e}_{r+1} = \cdots = \mathfrak{e}_n = (\theta - 1).$$

In that case, the quotient module

$$B = (g - 1)M/(\theta - 1)M_s \cong o/(\theta - 1) \oplus \cdots \oplus o/(\theta - 1),$$
where \(r \) summands occur. Since \((\theta - 1)\) is an ideal of norm \(p \), we see that \(B \) is an additive abelian group of type \((p, \ldots, p)\), and the integer \(r \) is thus uniquely determined as the rank of \(B \). Let us fix \(\beta_k \) in the \(k \)th summand of \((3)\) so that \(B \) is generated by the cosets \(\beta_1 + (\theta - 1), \ldots, \beta_r + (\theta - 1) \) (or \(\beta_n + (\theta - 1) \mathfrak{N} \) in case \(r = n \)). For example, we may choose \(\beta_k \) to be the unit element in \(\mathfrak{o} \) for \(k < n \), while if \(r = n \), we choose \(\beta_n \in \mathfrak{N} \) such that \(\beta_n \in (\theta - 1) \mathfrak{N} \).

On the other hand, \(M/M_s \) is a regular \(Z \)-module, and therefore \(M_s \) is a \(Z \)-direct summand of \(M \). Choose a regular \(Z \)-module \(X \) such that \(M \) is the direct sum of \(M_s \) and \(X \). Then

\[
(g - 1)M = (\theta - 1)M_s + (g - 1)X,
\]

so that the map \(\phi : X \rightarrow B \) defined by

\[
\phi(x) = (g - 1)x + (\theta - 1)M_s
\]

for \(x \in X \) is a linear map of \(X \) onto \(B \). With each \(x \in X \) we may thus associate an \(r \)-tuple \((\alpha_1, \ldots, \alpha_r)\) (also denoted by \(\phi(x) \)) such that

\[
(g - 1)x \equiv \alpha_1 \beta_1 + \cdots + \alpha_r \beta_r \pmod{(\theta - 1)M_s},
\]

with each \(\alpha_i \in \bar{Z} = Z/pZ \). By choosing a suitable \(Z \)-basis \(x_1, \ldots, x_m \) of \(X \), we may assume that the vectors \(\phi(x_1), \ldots, \phi(x_r) \) are linearly independent over \(\bar{Z} \). Under a further change of \(Z \)-basis of \(X \), we may then take

\[
(g - 1)x_i \equiv c_i \beta_i, \quad (g - 1)x_j \equiv 0 \pmod{(\theta - 1)M_s},
\]

\[
(1 \leq i \leq r, r < j \leq m),
\]

where each \(c_i \in Z \), \(c_i \not\equiv 0 \pmod{p} \). Set \((g - 1)x_i = c_i \beta_i + (g - 1)u_i \), \((g - 1)x_j = (g - 1)u_j \) \((1 \leq i \leq r, r < j \leq m)\), with each \(u_i \in M_s \), and define \(y_i = x_i - u_i \) \((1 \leq i \leq m)\). Then we have

\[
(6) \quad M = M_s \oplus Z y_1 \oplus \cdots \oplus Z y_m,
\]

where

\[
(7) \quad gy_i = y_i + c_i \beta_i, \quad gy_j = y_j \quad (1 \leq i \leq r, r < j \leq m)
\]

and where \(M_s \) defined by \((3)\) is made into a \(Z[g] \)-module by

\[
(8) \quad gm = \theta m \quad \text{for} \ m \in M_s.
\]

The structure of \(M \) is completely determined by the ideal class of \(\mathfrak{N} \), the integers \(r = Z \)-rank of \(B \), \(m = Z \)-rank of \(M/M_s \), \(n = \mathfrak{a} \)-rank of \(M_s \), and by the constants \(c_1, \ldots, c_r \). We show now that we may in fact take each \(c_i = 1 \); this is a consequence of the following:
Lemma 4. Let \mathfrak{a} be an ideal in \mathfrak{o}, let $\beta \in \mathfrak{a}$ be fixed, and let $c \in \mathbb{Z}$, $c \not\equiv 0 \pmod{p}$. Let $M_1 = \mathfrak{a} \oplus \mathbb{Z}y_1$ be made into a $\mathbb{Z}[g]$-module by defining $ga = \theta a$ for $a \in \mathfrak{a}$, $gy_1 = y_1 + \beta$. Let $M = \mathfrak{a} \oplus \mathbb{Z}y_2$ be made into a $\mathbb{Z}[g]$-module by defining $ga = \theta a$ for $a \in \mathfrak{a}$, $gy_2 = y_2 + c\beta$. Then M_1 and M are $\mathbb{Z}[g]$-isomorphic.

Proof. Set $u = 1 + \theta + \cdots + \theta^{c-1} = \text{unit in } \mathfrak{o}$. Since $u - c = (\theta - 1) + (\theta^2 - 1) + \cdots + (\theta^{c-1} - 1)$, we may choose $t \in \mathfrak{a}$ so that $(\theta - 1)t = (u - c)\beta$. Now define a linear map $\phi: M_1 \to M$ by

$$\phi(a) = ua, \quad a \in \mathfrak{a}, \quad \phi(y_1) = y_1 + t.$$

Then $g\phi(a) = \phi ga$ for all $a \in \mathfrak{a}$, and also

$$g\phi(y_1) = g(y_2 + t) = y_2 + c\beta + \theta t = y_2 + t + u\beta = \phi(y_1).$$

Thus ϕ is a $\mathbb{Z}[g]$-isomorphism of M_1 onto M.

To summarize, we have thus shown:

Theorem. Every \mathbb{Z}-regular $\mathbb{Z}[g]$-module is operator-isomorphic to a module defined by (3), (6), (7), and (8), with $c_1 = \cdots = c_r = 1$. The invariants which uniquely determine such a module (up to isomorphism) are: the ideal class of \mathfrak{a}, $n = \mathfrak{o}$-rank of M_1, $m = \mathbb{Z}$-rank of M/M_1, and $r = \mathbb{Z}$-rank of $(g - 1)M/(\theta - 1)M_1$; the only restrictions on these invariants are the conditions $r \leq m$, $r \leq n$. Conversely, for any such choice of invariants, equations (3), (6), (7), and (8) define a $\mathbb{Z}[g]$-module with the given invariants.

Corollary (See [2; 3].) The integrally-indecomposable regular $\mathbb{Z}[g]$-modules are those for which either $r = n = 0$, $m = 1$, or $r = m = 0$, $n = 1$, or $r = m = n = 1$. The number of nonisomorphic modules of these types is $2h + 1$, where h is the class number of \mathfrak{o}.

References

1. Introduction. Almost left alternative algebras were defined by Albert in [1]. They are algebras A over a field F of characteristic not two which satisfy these postulates:

I. The elements of A satisfy an identity of the form

$$z(xy) = a(zx)y + p(zy)x + r(xy)y + q(yz)x + e(yz)x + r(xz)y + s(xz)y$$

for elements $a, p, r, q, e, r, <r, r$ in F which are independent of x, y, z in A.

II. The relation $xx^2 = x^2x$ holds for every x of A.

III. There exists an algebra B with a unity quantity e such that B satisfies (1) and is not a commutative algebra.

An algebra is called almost right alternative if I, II, and III hold with (1) replaced by an identity of the same form but with $z(xy)$ replaced by $(xy)z$. These two identities are the general shrinkability conditions of level one, as defined by Albert in [2]. An almost alternative algebra is one which is both almost left alternative and almost right alternative.

Reference is made in [1] to several results which are proved here. In addition to the above postulates, we assume the flexible law, that is, $(xy)x = x(yx)$ for every x and y in A. This makes Postulate II redundant. Albert confined his investigation in [1] to nonflexible algebras.

Received by the editors February 20, 1956.

1 This paper is a portion of a Ph.D. thesis supervised by A. A. Albert and submitted to the University of Chicago in 1951. The author is now at Robert College, Istanbul.