SOME CONSEQUENCES OF THE APPROXIMATION THEOREM OF BING

O. G. HARROLD, JR.¹

1. Introduction. In the following paragraphs we consider several unsolved problems in the topology of 3-space. Among the results is included a new formulation of properties characterizing tame curves in three-space without any explicit mention of polyhedral sets.

Three-space is denoted by \(R^3 \), the null-set by \(\Box \), and the set of points in \(A \) but not in \(B \) by \(A \setminus B \). The combinatorial boundary of chain \(E \) is \(\partial E \) and the set of points on such a boundary by \(| \partial E | \). The closure of a set \(A \) is denoted by \(\overline{A} \), or \(A \).

Theorem (Bing). Given a compact 2-manifold \(M \) of \(R^3 \) with or without boundaries, a compact subset \(D \) of \(R^3 \) and a positive number \(\epsilon \). There is a 2-manifold \(N \) and a homeomorphism \(f \) of \(M \) on \(N \) such that no point of \(M \) is moved more than \(\epsilon \) and \(N \) is locally polyhedral at each point of \(N \setminus D \). If \(D \neq \Box \), \(f \) may also be taken so that no point \(x \) is moved more than the minimum of \(\epsilon \) and the distance from \(x \) to \(D \). In particular, \(f \) is the identity map at all points of \(D \cap M \) and \(D \cap M = D \cap N \) [1].

2. The "orthogonal" disk problem. Some simple closed curves in \(R^3 \) have the property that, if \(J \) is the curve, there is a disk \(D \) whose boundary links \(J \) and such that \(J \) and \(D \) meet in a single point. This property is preserved by homeomorphisms acting on \(R^3 \). The class of curves having this property is known to include curves \(\{ J \} \) such that under some homeomorphism of \(R^3 \) on itself some sub-arc of \(J \) is mapped on a rectifiable arc [5]. By the use of his approximation theorem, R. H. Bing [2] has constructed an example of a curve that admits no orthogonal disk.

3. A new formulation of properties \(\varnothing \) and \(\mathcal{Q} \). A 1-manifold \(J \) is said to have property \(\varnothing \) if at each point \(x \) of \(J \) and for positive \(\epsilon \) there is a set \(K(x, \epsilon) \) of diameter less than \(\epsilon \) that is a topological 2-sphere whose interior contains \(x \), that meets \(J \) at a set of points whose cardinal does not exceed the order of \(x \) in \(J \), and such that \(K \) is locally polyhedral modulo \(J \).

To see that the locally polyhedral character of \(K \) may be omitted

Presented to the Society, November 15, 1955; received by the editors March 10, 1956.

¹ This paper was written at the Point Set Topology Institute (University of Wisconsin, 1955) which was supported by a National Science Foundation Grant.
suppose K has the other requirements and $\epsilon' < \epsilon = \text{diameter } K$. Using $M = K$, $D = J$ and ϵ' in the approximation theorem, then $N = K_1(x, \epsilon)$ has the original requirements.

A 1-manifold J is said to have property Q at x if there is a disk D_1 such that $J \cap D_1$ is the closure of a neighborhood of x in J and D_1 is locally polyhedral at the points of $D_1 \setminus J$. To see that the locally polyhedral character of D_1 may be omitted, suppose D_2 has the requirements of D_1 apart from locally polyhedral character. If $M = D_2$ and $D = J$ and ϵ arbitrary in the approximation theorem we find a disk $N = D_1$ that is locally polyhedral at points of $N \setminus J$ and has the other requirements.

4. 1-cells contained in the interior of 2-cells. It has been known since 1921 when Antoine's thesis appeared that an arc in R^3 may be a subset of no topological 2-cell in R^3. Such an arc certainly does not lie on the boundary of a 2-cell and still less on the boundary of a 3-cell. (That a 2-cell in R^3 may be a subset of no topological 2-sphere and hence lie on the boundary of no 3-cell is implied by a result announced by Kapuano [7]). We limit ourselves here chiefly to the special case where the 1-cell lies interior (relative) to a 2-cell.

A fairly simple proof is now available that arcs exist lying on no 2-cell. Example 1.4 of Fox-Artin [3] is an example of a wild arc that is the union of two tame arcs, having only an end point in common. If J is the set of points on this arc and J_1 is a sub-arc of J whose interior contains the "wild point" of the imbedded arc, then J_1 is also wild. Now if J were a part of the boundary of some disk D in R^3, then J_1 has properties \emptyset and \mathcal{Q} (in the new form) and, by Theorem 6 of [6], would be tame. But J_1 is wild.

Theorem. Let J be a closed 1-cell in R^3, then J lies in the interior of a closed 2-cell if and only if J lies on the boundary of some bounded, open, connected ulc subset of R^3.

If: Let A be the bounded, open, connected subset of R^3 that is ulc and has J on its boundary. By the results of Wilder, [8, Theorem 8.3, p. 311], every nondegenerate component of the boundary M of A is a classical 2-manifold. If M_1 is the component of M determined by J, then, by triangulation of M_1, an open 2-cell E in M_1 may be found such that J is in Int E (rel M_1).

Only if: If J lies in the interior of a disk E, there is a sub-disk E_1 of E such that J is in $| \partial E_1 |$. Using the approximation theorem (with $D = J$, $M = E_1$) there is an "almost" polyhedral disk N whose boundary contains J that is locally polyhedral at points of $N \setminus J$. One may "inflate" N to obtain a closed 3-cell F that is locally polyhedral at
points $F \setminus J$ and $|\partial F|$ contains J. Then J is contained in the closure of the interior of F and $\text{Int } F$ is the required bounded, open, connected, ulc subset.

5. **A special case of the union of two locally tame sets.** It is known that locally tame sets are tame. However, the union of two tame sets having a single common point need not be tame. In this connection the following theorem is of interest.

Theorem. Let J be a simple closed curve that is polyhedral and let J be the boundary of any disk F in R^3. Then J is the boundary of a polyhedral disk.

(Thus J is tame and unknotted).

Proof. If J is the boundary of any disk D, then J has the (new) property Q at each point. Since J is polyhedral, it has property P at each point. By Theorem VII of [6] it is locally tamely imbedded, hence tamely imbedded. By Graeub [4, p. 39], this implies there is a polyhedral 2-cell of which J is the boundary.

References

The University of Tennessee