Orthogonal harmonic functions in space
HTML articles powered by AMS MathViewer
- by Thomas A. Elkins
- Proc. Amer. Math. Soc. 8 (1957), 500-509
- DOI: https://doi.org/10.1090/S0002-9939-1957-0086136-0
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 8 (1957), 1160-1160.
References
- R. Courant, Differential and integral calculus (trans. by E. J. McShane) vol. II, New York, Nordemann.
Paul Delens, Sur la théorie du potentiel et les congruences isothermes, J. Math. Pures Appl. vol. 14 (1935) pp. 73-111.
Thomas A. Elkins, Conjugate harmonic functions in space, Ph.D. thesis, Carnegie Institute of Technology, May, 1956.
Édouard Goursat, A course in mathematical analysis (trans. by Earle Raymond Hedrick), vol. I, Boston, Ginn and Company, c. 1904.
—, A course in mathematical analysis, vol. II, part II, Differential equations (trans. by Earle Raymond Hedrick and Otto Dunkel), Boston, Ginn and Company, c. 1917.
- Tullio Levi-Civita, Opere matematiche. Memorie e note. Vol. I. 1893–1900, Nicola Zanichelli Editore, Bologna, 1954 (Italian). Pubblicate a cura dell’Accademia Nazionale dei Lincei. MR 0062680
- G. Y. Rainich, Analytic functions and mathematical physics, Bull. Amer. Math. Soc. 37 (1931), no. 10, 689–714. MR 1562240, DOI 10.1090/S0002-9904-1931-05241-1
- E. C. Titchmarsh, Han-shu lun, Science Press, Peking, 1964 (Chinese). Translated from the English by Wu Chin. MR 0197687
Bibliographic Information
- © Copyright 1957 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 8 (1957), 500-509
- MSC: Primary 31.0X
- DOI: https://doi.org/10.1090/S0002-9939-1957-0086136-0
- MathSciNet review: 0086136