CONVEX SETS AND NEAREST POINTS!
R. R. PHELPS?

1. Introduction. A well known theorem due to Motzkin [11] and
extended by Busemann [3] and Jessen [7] characterizes the convex-
ity of a closed set .S in Euclidean n-space E" in the following manner:
S is convex if and only if to each point in E" there corresponds a unique
nearest point in S. We show here that if S is convex, the set S, of all
points having z as a nearest point in S is a convex cone with vertex z,
while the hypothesis that S, be merely a cone with vertex z (for each
z&.S) is shown to characterize the convexity of S.

In trying to establish these results in a more general normed linear
space E we find that the statement “S, is convex whenever S is
convex” is equivalent to the existence of an inner product in E when
the dimension of E is at least three, while in a two-dimensional space
it is equivalent to strict convexity. A theorem by Motzkin [12] leads
easily to the analogous result that E is an inner product space if and
only if S, is convex for every SCE (and 2&.S).

In the concluding section we consider a nearest-point map f which
assigns to each point of E a nearest point in a given closed set .S.
It is shown that the property “f shrinks distances whenever it exists
for a closed convex set” characterizes inner product spaces of three
or more dimensions. In two-dimensional spaces this property is equiv-
alent to strict convexity and symmetry of Birkhoff’s orthogonality
[2]. The convexity of a closed set in E" is shown to be characterized
by the fact that its nearest-point map shrinks distances.

2. Definitions and remarks. Throughout this paper E will be a
normed linear space and S a subset thereof. For 2&S, .S, will be the
set {x:||x—2|| =inf,es|lx—9|}, the set of all points in E having z
as a nearest point in S. It may well be that z is the only point in S,.
It is not difficult to verify that if a sequence of points in S, converges
then its limit is in S;; hence S; is always closed.

We will say that S is proximinal’ if for each point x in E there is a
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point of S nearest to x, i.e., if for each point xE€E there is at least
one point z in S such that x is in S,. If there is a unique such z for each
x in E we will say that S is uniquely proximinal. Although we are not
primarily interested in conditions which guarantee that S is prox-
iminal we list some of the known ones:

(i) S is proximinal if it is compact.

(ii) Every closed set S is proximinal if E is finite dimensional.

(iii) Every closed convex set S is proximinal if E is reflexive.

3. Cones, smoothness and strict convexity. The following lemma
has appeared before [10] but will be proved here since we use it
several times.

LeMMA 3.1. If S is convex and 3E.S then S, is a cone with vertex z.

Proor. We can suppose z=¢. It will suffice to show that if yES,,
then \yE.S, for each A>0. Suppose xS, then ||y|| = ||y —«]|. If A <1,
IMyll+ ly =Ml =lyll <[ly —xll <lly =l + [y =]/, whence |Iny
<|Ay — #f|. If X > 1, A'x is in the convex set S so |[Ny|| = Ny
<Ny =21 =|Ay —x||. Hence \yE.S, for each A>0.

A set E is strictly convex if the boundary of its unit cell contains no
line segment, i.e., if ||x|| =1=||y|| and N€]0, 1[ imply | Ax+(1=N)y]|
< 1. The following lemma characterizes strict convexity in terms use-
ful to us.

LeMMA 3.2. The following statements are equivalent:

(i) E is strictly convex.

(i) For each convex set S and distinct points x and y of S, S:MNS, s
empty.

(iii) Whenever a convex set S is proximinal it is uniquely proximinal.

Proor. (i)=(ii). If S;NS, is nonempty we can suppose ¢ E.S.MNS,,
so [lx]|=||3ll. Now, (1/2)(x+y)ES and if E is strictly convex
Il(1/2) x4+ <||#l| =]|ll, a contradiction.

(ii)=(iii). This is immediate from the definitions.

(iii)=(i). Suppose E is not strictly convex, then there exist distinct
points x and y such that |Ax4+(1—\)y||=1 for each A€ [0, 1]. The
(compact) convex line segment [x, y] is proximinal but not uniquely
proximinal since the origin is equidistant from all points of [x, y].

We say that E is smooth if its unit cell has a unique supporting
hyperplane at each of its boundary points. (A hyperplane is a max-
imal proper closed linear variety.) We give a partial converse to
Lemma 3.1 in the following lemma (stated but not proved in [10]).

LeEMMA 3.3. Suppose S is closed and proximinal and E is smooth.
Then S is convex if for each zE S, S, is a cone with vertex z.
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PRrooF. Suppose S is not convex. Then there exist points % and v
in S such that Ju, v[CE~S. Let x=(1/2)(u+v). Since S is prox-
iminal xE.S, for some &S and we can suppose without loss of gen-
erality that z=¢. Let H be the unique hyperplane supporting
Npgx={y:|ly—«|| <||x||} at ¢ and let H' be the open halfspace
determined by H which contains N x. Not both # and v are in the
convex set E~H’ since x is not. Suppose u € H’. We will show that for
some A\>0, #E NpAx=ANp x so that |[Ax||>|Ac—u|| and hence
Ax & Sy, contradicting the assumption that Sy is a cone with vertex ¢.

Suppose that for every A>0, u AN x. Then aud.yx for each
€0, 1[ and hence the convex set [, ¢[ is disjoint from Nj,x.
There exists a hyperplane G separating [, ¢[ from Njx which
necessarily supports Ny x at ¢. But « is in the closed halfspace deter-
mined by G which does not contain Nj;x and hence G H, contra-
dicting the fact that E is smooth. Thus for some A>0, #EAN|,x,
which was to be shown.

The assumption of smoothness of E in Lemma 3.3 is a necessary
one, since it is not difficult to show that the statement of the lemma,
with smoothness omitted, implies that E is smooth.

Since every closed subset of (smooth) E” is proximinal, Lemmas 3.1
and 3.3 combine to prove the following characterization of convexity.

THEOREM 3.4. A closed set S in E is convex if and only if for each
2E S, S, is a cone with vertex z.

4. Convex cones and inner products. We say that E is an inner
product space if E admits an inner product (x, y) such that ”x”
= (x, x)V/2. If E is an inner product space it is easily verified that for
points x, ¥ and z in E and A& R the following identity holds:

s = Do+ (1 =Nyl
=M =22 =21 = WVl[z = sll2+ @ =Mz =5
(In fact [8] E admits an inner product if and only if (1) holds true.)

In particular, we can see that an inner product space is strictly
convex by setting z=4, ||*|| =1=||y|| and N€]0, 1[in (1).

LEMMA 4.1. If E is an inner product space and zE.S then S, is con-
vex.

Proor. Suppose z = ¢ and that x € S, and y € S,. Let w
=Ax+(1—=\)y, A€]0, 1[. Then if v is any point of S, |x|| < |lx—v||
and ||y|| £||y — || while, by (1), we have
[l = Nlall2 = x4 = Wl = 5]+ @ = W]s]]?

= Mlx =2 =2 = Wlle = sll2+ @ =Wlfe = 52 = [lw =]

(1
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50 ||| S||w—1|| and hence wES,.

Motzkin [12] has proved the following interesting result: Suppose
that E 1is two-dimensional. Then E is an inner product space if and only
if for each set S and 3 S, S, 1s convex. Since a normed linear space is
an inner product space if and only if each two-dimensional subspace
has an inner product [8], Motzkin’s result leads easily to the suffi-
ciency portion of the following theorem.

THEOREM 4.2. 4 normed linear space E is an inner product space if
and only if for each set SCE and 2E S, S, is convex.

Demanding convexity of S, only when S itself is convex leads to
the following result, closely related to Theorem 4.2.

THEOREM 4.3. Suppose that the dimension of E is at least three [resp.
equal to two ). Then E is an inner product space [resp. strictly convex ] if
and only if for each convex set S and zE .S, S, is convex.

The portions of Theorem 4.3 which are as yet unproved follow
from the next three lemmas. The idea used in the proof of the follow-
ing lemma is due to James [6, Theorem 2].

LEMMA 4.4. Suppose the dimension of E is at least three. Then E is an
inner product space provided S, is convex for each convex set SCE and
2 S.

Proor. If x; and x; are any two linearly independent points of E
there exist hyperplanes H' and H? such that x,EH, and x,€H, (H*
=h;'(0), where A, is a continuous linear functional such that k;(x;)
=||x| and ||2]| =1 [1, p. 55]). By Lemma 3.1, H} and H? are convex
cones with vertex ¢ and hence a;x;EHL if ;=0 (i=1, 2). But yEH!
if and only if —yEH?, so [[(—x1) —y|| =[lx1— (=) 2 [xl| =[] =i,
which shows that —x;EH, and therefore a1 & H, for ey € R. Simi-
larly, aux,EHj for ap & R. Thus, if we let G=H'NH?, G, is also a
convex cone with vertex ¢ and hence contains ayx;+asx; for cy&ER
and as€R. Since H! and H? are hyperplanes, E is the direct sum of
G and the two-dimensional sub-space F spanned by x; and x;. There-
fore, if 2EE, z=(awx1+asx;) —g, where —gEG, and &;€ER, a,ER.
Letting f(2) =%+ asx, we see that f is a projection onto F and since
f(3)EG, and ¢€G, [|f(2)|| 2||f(z) — el = |2 and therefore ||| =1.

Thus, we can always find a projection of norm one on any two-
dimensional subspace of E and therefore it is possible to define an
inner product in any three-dimensional subspace of E [9, Theorem
3]. This, however, implies that we can define an inner product in E
itself [8].
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By a less direct argument than the above it can be shown that the
conclusion still holds if the hypothesis “S, is convex whenever z&.S
and S is convex” be replaced by “L, is convex whenever L is a line
and z2&€L.”

LEMMA 4.5. If L, is convex for each line L and 2& L then E is strictly
convex.

Proor. If E is not strictly convex there exist distinct points x and
y such that |Ax + (1 = \)y|| =1 for each A€ [0, 1]. Let L

= e+ (1=N)y: NER}. IS 1, [he+ (1 =\ 2N — | (=N 1o
=1 while if A<0, |[Ax+(1 )\)y||>(1 =Nyl = [A]||«]| =1. Thus,
(1/2)xE La2 ey since if z is any point of L, “z— 1/2)x||>||z||
— (1/2)|ldl 2 1/2) = /2|l = [(1/2) (x+y) — (1/2>x|l Similarly,
(1/2)yELame+w- Further, x+(1/2)yE L2 aw, for if 2&L, then
x+y—2EL and hence

= + (1/2)3) = (/D (= + H)
= 4724 = /2 + 5) — 1/2))
=l +y =2 — /25l = Iz + (1/2)9) = 4.
Since Lz (z+y is assumed to be convex,
1/2) [z + (1/2)y] + (1/2)[(1/2)x] = B/Hx + (1/Dy € Lam +w,
which is impossible, (3/4)x+(1/4)y itself being a point of L.

LeEMMA 4.6. Suppose E is strictly convex and of dimension two. Then
if S is convex and zE S, S, is a convex cone with vertex z.

Proor. By Lemma 3.1, S, is a cone with vertex 2, so it remains
only to show that S; is convex. Suppose z=¢ and suppose x&.S
and yES,; we must show that [x, y]CS;.

Let K be the closed convex cone generated by all the rays passing
from ¢ through points of [x, y]. Then KNS={¢}, for if wEKNS
there exists A€ 0, 1] such that )\w is in the closed triangle ¢xy and
since S is convex, MwES. Let u=(||«|| +|[y])~ (|lyllx+]|lly). Then
uE]x y[ and hence A\w is in the closed triangle ¢ux, say. (Otherwise
Mw is in ¢uy.) But if au, € [0, 1], is any point of side [¢, #], [|x —au/|
<||«]|. Consequently, ||x—)\w|| <||%|/| and so xESy. By strict con-
vexity and Lemma 3.2, \w=¢ and therefore w=4¢.

Now suppose zE [x, y] and v€S. Then [z, v] must intersect
{)\x A0} or {Ay:A=0};say AxE [z, v], A\20. Then AxES, (since
S, is a cone) and ||2]| €[|z— )\x”+”)\x]|<“z x|+ A= =||z—1|.
Since this holds for arbitrary vES, 2& ;.
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5. The nearest-point map. If a closed set S in E is proximinal we
can define a function f from E onto S as follows: If xEE let f(x) be a
point of S such that x&Sy«. It is clear that f, called a nearest-point
map for S, exists if and only if S is proximinal, and that f is unique if
and only if S is uniquely proximinal. We say that f shrinks distances
if ”f(x) —f(y)” §||x—y“ whenever x, yEE. We will say that E has
the property P if a nearest-point map shrinks distances whenever it
exists for a closed convex set SCE. The following theorem is well
known, but a proof is included for completeness.

THEOREM 5.1. Each inner product space E has the property P.

PRroOOF. Suppose a nearest-point map f exists for a closed convex
set S. Since E is strictly convex Lemma 3.2 implies that f is unique.
Suppose xEE and y&EE and that f(x) =¢. Let H be the hyperplane
through ¢ which is orthogonal to f(y) and let J be the open half-space
determined by H which contains f(y). Let K be the open half-space
determined by H+f(y) which contains ¢. If x&J there exists a>0
such that [|x||>||x—af()||. Pick A>0 such that Aa=1/2, then
[Ihx|| > [Ax— (1/2)f(»)||. But, since (1/2)f(y) €S, this contradicts the
fact that f(x), and hence f(Ax), is the origin. We conclude that x&J
and an entirely similar argument shows that y& K. Thus, [|x—4/| is no
less than the width of JNK, and this is equal to |[f(y)||.

Birkhoff [2] has defined a type of orthogonality which is meaning-
ful in a general normed linear space E and which coincides with the
usual notion in an inner product space. If x>0 we say that y s
orthogonal to x (written y_Lx) if ||y—Ax|| =||y|| for each AER. Note
that this is equivalent to saying that y& (Rx)4, where Rx = {A\x:\ER }
is the line determined by x and ¢. We say that orthogonality is sym-
metric if x Ly implies y Lx. Day [4, Theorem 6.4] and James [6, Theo-
rem 1] have independently proved that a normed linear space of di-
mension at least three is an inner product space if and only if orthogonal-
ity is symmetric. We use this fact in proving the following theorem.

THEOREM 5.2. Suppose that the dimension of E is at least three [resp.
equal to two)|. Then E is an inner product space [resp. strictly convex
and orthogonality is symmetric| if and only if E has the property P.

The proof is contained in Theorem 5.1 and the following succession
of remarks and lemmas.

LeMMA 5.3. If E has the property P then E is strictly convex.

Since the proof of this lemma is quite straightforward, it will be
omitted.
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LeEMMA 5.4. If E has the property P then orthogonality in E is sym-
melric.

Proor. By Lemma 5.3, E must be strictly convex and hence a
nearest-point map is unique whenever it exists for a closed convex
set. Suppose that neither y nor x is the origin and that y Lx. The line
Rx is uniquely proximinal and the nearest-point map f exists for Rx.
Since Ry C (Rx)4, f(Ay) =¢ for any AER. Now E has the property P,
SO Hx“ =”f(x) —f()\y)” §”x—)\yH for any AER, i.e., xE(Ry)g or x Ly.
Thus, orthogonality is symmetric.

If the dimension of E is at least three, the Day-James theorem men-
tioned above, together with Lemma 5.4, proves that if E has property
P it is an inner-product space.

LEMMA 5.5. Suppose that E is two-dimensional. If E is strictly convex
and orthogonality is symmetric then E has the property P.

ProOF. Suppose the nearest-point map f exists for a closed convex
set S and suppose x, yE E. We can assume that f(x) =¢. There exists
a point z7%¢ such that z1f(y) and, since E is strictly convex, w Lf(y)
implies wE Rz [5, Theorem 4.3]. Let J be the open half-space de-
termined by Rz which contains f(y) and let K be the open half-space
determined by Rz+f(y) which contains ¢. If x&J there exists a
unique € R such that x —af(y) Lf(y) [5]. Now, a>0 since x —af(y)
€ Rz and «x is on the same side of Rzas is f(y). Thus, using strict con-
vexity again, [|x—af(y)|| <||lx||. As in the proof of Theorem 5.1 we
conclude that x€J. A similar argument shows that y&§ K. Thus,
|lx—9|| is no less than the width of KNJ. Now, by symmetry of
orthogonality, f(y) 1z and so the distance from f(y) to Rz is attained
at ¢. Hence the distance from Rz-+f(y) to Rz (which is the width of
JNK) is equal to ||f(y)|| and therefore ||f(»)|| =||x—1/.

It is not hard to see that neither strict convexity nor symmetry
can be omitted in Lemma 5.5, since P implies both and there exist
examples showing that neither implies the other.

The following theorem shows that the “shrinking” property of near-
est-point maps is pretty well restricted to those which exist for con-
vex sets.

THEOREM 5.6. Suppose that E is strictly convex and that a nearest-
point map f exists for the closed set SCE. Then S is convex if f shrinks
distances.

Proor. If S is not convex there exist distinct points x and y of S
such that ]x, y[CE~S. Letting z=(1/2)(x+y) we see that one of
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”x—f(z)”, ”y—f(z)” is greater than (1/2)”x-—y”. (This is obvious if
f(2) is x or y, while if f(2) #x, ¥ and neither ”x-—f(z)” nor ”y—f(z)
is greater than (1/2)||x—v||, strict convexity implies that |[x—y
<||lx=f()|| +|ly=f@]| <||x—»|l, a contradiction.) Suppose, then,
that || —f(z)|[ > (1/2)||x—3|| =||x—4] . Since f(x) ==, this contradicts
the assumption that f shrinks distances. We get the same contradic-
tion if ||y —f(2)|| > (1/2)||x—y]|, hence S must be convex.

A simple two-dimensional example can be constructed to show that
we need to assume strict convexity in the above theorem.

Since every closed subset of Euclidean n-space E" is proximinal,
Theorems 5.1 and 5.6 combine to give the following corollary.

COROLLARY 5.7. Let f be a nearest-point map for the closed set SC E™.
Then S is convex if and only if f shrinks distances.
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