
CONVEX SETS AND NEAREST POINTS1

R. R. PHELPS2

1. Introduction. A well known theorem due to Motzkin [ll] and

extended by Busemann [3] and Jessen [7] characterizes the convex-

ity of a closed set 5 in Euclidean re-space En in the following manner:

5 is convex if and only if to each point in E" there corresponds a unique

nearest point in S. We show here that if 5 is convex, the set Sz of all

points having z as a nearest point in S is a convex cone with vertex z,

while the hypothesis that Sz be merely a cone with vertex z (for each

zES) is shown to characterize the convexity of S.

In trying to establish these results in a more general normed linear

space E we find that the statement "S2 is convex whenever 5 is

convex" is equivalent to the existence of an inner product in E when

the dimension of E is at least three, while in a two-dimensional space

it is equivalent to strict convexity. A theorem by Motzkin [12] leads

easily to the analogous result that E is an inner product space if and

only if Sz is convex for every SEE (and zES).

In the concluding section we consider a nearest-point map/which

assigns to each point of £ a nearest point in a given closed set S.

It is shown that the property "/ shrinks distances whenever it exists

for a closed convex set" characterizes inner product spaces of three

or more dimensions. In two-dimensional spaces this property is equiv-

alent to strict convexity and symmetry of Birkhoff's orthogonality

[2]. The convexity of a closed set in E" is shown to be characterized

by the fact that its nearest-point map shrinks distances.

2. Definitions and remarks. Throughout this paper E will be a

normed linear space and S a subset thereof. For zES, Sz will be the

set {x: ||x — z\\ =inf„e,s ||x — y\\}, the set of all points in E having z

as a nearest point in 5. It may well be that z is the only point in Sz.

It is not difficult to verify that if a sequence of points in Sz converges

then its limit is in Sz; hence Sz is always closed.

We will say that 5 is proximinal3 if for each point x in E there is a
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point of S nearest to x, i.e., if for each point xEE there is at least

one point z in 5 such that x is in Sz. If there is a unique such z for each

x in E we will say that 5 is uniquely proximinal. Although we are not

primarily interested in conditions which guarantee that S is prox-

iminal we list some of the known ones:

(i)  S is proximinal if it is compact.

(ii) Every closed set S is proximinal if E is finite dimensional.

(iii) Every closed convex set 5 is proximinal if E is reflexive.

3. Cones, smoothness and strict convexity. The following lemma

has appeared before [10] but will be proved here since we use it

several times.

Lemma 3.1. If S is convex and zES then Sz is a cone with vertex z.

Proof. We can suppose z=<2>. It will suffice to show that if yESt,

then \yES4, for each A>0. Suppose x£S, then ||y|| ^=||y — x||. If X<1,

||Xy|| + ||y-Xy||=||y||=g||y-*||g||y-Xy||+||Xy-x||,   whence   ||Xy

:g||Xy — x||. If X > 1, X_1x is in the convex set S so ||Xy|| = X||y

^X||y—X_1x|| =||Xy — x||. Hence \yES+ for each X>0.

A set E is strictly convex if the boundary of its unit cell contains no

line segment, i.e., if ||x|| =1 =||y|| and X£]0, 1 [ imply ||Xx + (l—X)y||

< 1. The following lemma characterizes strict convexity in terms use-

ful to us.

Lemma 3.2. The following statements are equivalent:

(i) E is strictly convex.

(ii) For each convex set S and distinct points x and y of S, Sxf}Sy is

empty.

(iii)  Whenever a convex set S is proximinal it is uniquely proximinal.

Proof. (i)=*(ii). If SzC\Sy is nonempty we can suppose <pESxr\Sv,

so IHIHHI- Now, (1/2)(x+y)£,S and if E is strictly convex
||(l/2)(x+y)|| <||x|| =||y||, a contradiction.

(ii)=>(iii). This is immediate from the definitions.

(iii)=>(i). Suppose E is not strictly convex, then there exist distinct

points x and y such that ||Xx + (l—X)y|| =1 for each X£ [0, l]. The

(compact) convex line segment [x, y] is proximinal but not uniquely

proximinal since the origin is equidistant from all points of [x, y].

We say that £ is smooth if its unit cell has a unique supporting

hyperplane at each of its boundary points. (A hyperplane is a max-

imal proper closed linear variety.) We give a partial converse to

Lemma 3.1 in the following lemma (stated but not proved in [10]).

Lemma 3.3. Suppose S is closed and proximinal and £ is smooth.

Then S is convex if for each zES, Sz is a cone with vertex z.
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Proof. Suppose S is not convex. Then there exist points u and v

in S such that ]u, v[EE~S. Let x=(l/2)(u-\-v). Since 5 is prox-

iminal xESz for some zES and we can suppose without loss of gen-

erality that z=<p. Let H be the unique hyperplane supporting

N\\x\\x=- {y: \\y — x\\ <\\x\\} at <f> and let H' be the open halfspace

determined by H which contains iV||x||X. Not both u and v are in the

convex set E~H' since x is not. Suppose uEH'. We will show that for

some X>0, m£A7||xi||Xx = X./V||i||X so that ||Xx|| >||Xx —m|| and hence

Xx^S^,, contradicting the assumption that S$ is a cone with vertex <f>.

Suppose that for every X>0, uE^N\\x\\x. Then cmEwax for each

aGJO, l[ and hence the convex set [u, <j>[ is disjoint from N\\x\\x.

There exists a hyperplane G separating [u, <f>[ from iV|[x|]X which

necessarily supports N$z\\x at c6. But u is in the closed halfspace deter-

mined by G which does not contain N\\x\\x and hence Gt*H, contra-

dicting the fact that E is smooth. Thus for some X>0, MGXA7||Iyxf

which was to be shown.

The assumption of smoothness of E in Lemma 3.3 is a necessary

one, since it is not difficult to show that the statement of the lemma,

with smoothness omitted, implies that E is smooth.

Since every closed subset of (smooth) En is proximinal, Lemmas 3.1

and 3.3 combine to prove the following characterization of convexity.

Theorem 3.4. A closed set S in En is convex if and only if for each

zES, Sz is a cone with vertex z.

4. Convex cones and inner products. We say that E is an inner

product space if E admits an inner product (x, y) such that ]|x||

= (x, x)1'2. If E is an inner product space it is easily verified that for

points x, y and z in E and \ER the following identity holds:

||«- [Xx+(1-\)3<]||2

= X||x - z||2 - X(l - X)||x - y\\2 + (1 - X)||z - y\\2.

(In fact [8] E admits an inner product if and only if (1) holds true.)

In particular, we can see that an inner product space is strictly

convex by setting z=<p, \\x\\ =1 =\\y\\ and X(E]0, 1 [ in (1).

Lemma 4.1. If E is an inner product space and zES then Sz is con-

vex.

Proof. Suppose z = <p and that x £ S0 and y E S+. Let w

=Xx + (l—X)y, X£]0, 1 [. Then if v is any point of S, ||x|| g||x —1>||

and ||y|| g||y —d|| while, by (1), we have

IMI2 = X||x||2 - X(l - X)||x - y||2 + (1 - X)|M|2

^ X||x - ^l2 - X(l - X)||x - y\\2 + (1 - X)||» - y||2 = ||w - v\\\
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so \\w\\ 2£||w—»|| and hence wES^,.

Motzkin [12] has proved the following interesting result: Suppose

that E is two-dimensional. Then £ is an inner product space if and only

if for each set S and zES, Sz is convex. Since a normed linear space is

an inner product space if and only if each two-dimensional subspace

has an inner product [8], Motzkin's result leads easily to the suffi-

ciency portion of the following theorem.

Theorem 4.2. A normed linear space E is an inner product space if

and only if for each set SEE and zES, Sz is convex.

Demanding convexity of Sz only when 5 itself is convex leads to

the following result, closely related to Theorem 4.2.

Theorem 4.3. Suppose that the dimension of E is at least three [resp.

equal to two]. Then E is an inner product space [resp. strictly convex] if

and only if for each convex set S and zES, Sz is convex.

The portions of Theorem 4.3 which are as yet unproved follow

from the next three lemmas. The idea used in the proof of the follow-

ing lemma is due to James [6, Theorem 2].

Lemma 4.4. Suppose the dimension of E is at least three. Then £ is an

inner product space provided Sz is convex for each convex set SEE and

zES.

Proof. If Xi and x2 are any two linearly independent points of £

there exist hyperplanes 771 and 772 such that xi£77^ and x2£77| (H{

= hi'1(0), where hi is a continuous linear functional such that h,(xi)

= ||x,|| and ||/},|| =1 [l, p. 55]). By Lemma 3.1, H\ and 77| are convex

cones with vertex <6 and hence aiX,EH\ if a^O (2 = 1, 2). But yEH1

if and only if -yEH\ so ||(-*i)-y|[ =||*i-(-y)|| ^||*i|| =|| -Xi|J,
which shows that —XiEHl and therefore a,Xi£77j for aiER. Simi-

larly, a2x2EHl for a2ER- Thus, if we let G = Hir\H2, G$ is also a

convex cone with vertex <j> and hence contains «iXi+a2x2 for aiER

and a2ER- Since 271 and 772 are hyperplanes, E is the direct sum of

G and the two-dimensional sub-space F spanned by Xi and x2. There-

fore, if zEE, z = (aiXi+a2x2)—g, where —gEG, and aiER, a2ER-

Letting/(z) =aiXi+a2x2 we see that/is a projection onto F and since

f(z)EG, and gEG, \\f(z)\\ g||/(z) -g\\ =\\z\\ and therefore \\f\\ = 1.
Thus, we can always find a projection of norm one on any two-

dimensional subspace of £ and therefore it is possible to define an

inner product in any three-dimensional subspace of £ [9, Theorem

3]. This, however, implies that we can define an inner product in £

itself [8].
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By a less direct argument than the above it can be shown that the

conclusion still holds if the hypothesis "S, is convex whenever zES

and 5 is convex" be replaced by "Lz is convex whenever L is a line

and zEL."

Lemma 4.5. If Lz is convex for each line L and zEL then E is strictly

convex.

Proof. If £ is not strictly convex there exist distinct points x and

y such that ||Xx + (1 - X)y|| = 1 for each X E [0, l]. Let L
= {Xx + (l-X)y:XGF}.IfX>l,||Xx+(l-X)y||^X||x| - j (1 -X)| ||y||
= 1 while if X<0, ||Xx+(l-X)y||^(l-X)||y||-|x|||x|[ = l. Thus,
(l/2)x£L(i/2)(z+I,) since if z is any point of L, ||z—(l/2)x|| ^||z||

- (1/2)||*|| ^ (1/2) = (l/2)||y|| = ||(l/2)(x+y) - (l/2)x||. Similarly,
(l/2)yGL(i/2Hz+i/)- Further, x + (l/2)yGL(i/2)(*+i,), for if zEL, then
x+y—zEL and hence

||(x+(l/2)y)-(l/2)(x+y)||

= ||(l/2)x||=||(l/2)(x+y)-(l/2)y||

g ||(x + y - z) - (l/2)y\\ = ||(x + (1/2)y) - z\\.

Since La/2)(z+i/) 1S assumed to be convex,

(1/2) [x+ (l/2)y] + (1/2) [(1/2)x] = (3/4)x + (l/4)y E La/2)ix+yh

which is impossible, (3/4)x + (l/4)y itself being a point of L.

Lemma 4.6. Suppose E is strictly convex and of dimension two. Then

if S is convex and zES, Sz is a convex cone with vertex z.

Proof. By Lemma 3.1, Sz is a cone with vertex z, so it remains

only to show that Sz is convex. Suppose z=c6 and suppose xG-S*

and yES^,; we must show that [x, y]C5*.
Let K be the closed convex cone generated by all the rays passing

from <j> through points of [x, y]. Then Kf~\S= {<p}, for if wEKf\S

there exists X£]0, l] such that \w is in the closed triangle <6xy and

since S is convex, Xw£S. Let w = (||x||+||y||)-1(||y||x + ||x||y). Then

uE]x, y [ and hence Xw is in the closed triangle <j>ux, say. (Otherwise

\wisin <puy.) But if aw, aE [0, l], is any point of side [<p, u], ||x —o;m||

g||x||. Consequently, ||x—Xw|| ^||x|| and so xES\w. By strict con-

vexity and Lemma 3.2, \w=(p and therefore w = <p.

Now suppose z£[x, y] and vES. Then [z, v] must intersect

{Xx:X^0} or {Xy: XSiO}; say Xx£ [z, v], XSiO. Then XxGS^, (since

S+ is a cone) and ||z|| ^||z-Xx|| +||Xx|| =g||z-X*||+||Xx-i;|| =||«-w||.

Since this holds for arbitrary vES, zES<p.
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5. The nearest-point map. If a closed set S in £ is proximinal we

can define a function/from £ onto 5 as follows: If x£E Iet/(x) be a

point of S such that xES/(X). It is clear that/, called a nearest-point

map for S, exists if and only if S is proximinal, and that/ is unique if

and only if S is uniquely proximinal. We say that / shrinks distances

if ||/(x) — f(y)\\ ^\\x — y\\ whenever x, yEE. We will say that £ has

the property P if a nearest-point map shrinks distances whenever it

exists for a closed convex set SEE. The following theorem is well

known, but a proof is included for completeness.

Theorem 5.1. Each inner product space £ has the property P.

Proof. Suppose a nearest-point map / exists for a closed convex

set S. Since £ is strictly convex Lemma 3.2 implies that/ is unique.

Suppose xEE and yEE and that/(x) =<j>. Let 77 be the hyperplane

through c6 which is orthogonal to/(y) and let 7 be the open half-space

determined by 77 which contains/(y). Let K be the open half-space

determined by H+f(y) which contains <j>. If x£7 there exists a>0

such that ||x||>||x-a/(y)||. Pick X>0 such that Xa=l/2, then

||Xx||>||Xx-(l/2)/(y)||. But, since (l/2)f(y)ES, this contradicts the

fact that/(x), and hence/(Xx), is the origin. We conclude that xEJ

and an entirely similar argument shows thaty(JE. Thus, ||x— y\\ is no

less than the width of JC\K, and this is equal to ||/(y)||.

Birkhoff [2] has defined a type of orthogonality which is meaning-

ful in a general normed linear space £ and which coincides with the

usual notion in an inner product space. If X9*0 we say that y is

orthogonal to x (written y_Lx) if ||y— Xx|| ^||y[| for each X£E. Note

that this is equivalent to saying that yE(Rx)*, where Ex = {Xx:\ER}

is the line determined by x and <j>. We say that orthogonality is sym-

metric if X-Ly implies y_Lx. Day [4, Theorem 6.4] and James [6, Theo-

rem 1 ] have independently proved that a normed linear space of di-

mension at least three is an inner product space if and only if orthogonal-

ity is symmetric. We use this fact in proving the following theorem.

Theorem 5.2. Suppose that the dimension of E is at least three [resp.

equal to two]. Then E is an inner product space [resp. strictly convex

and orthogonality is symmetric ] if and only if £ has the property P.

The proof is contained in Theorem 5.1 and the following succession

of remarks and lemmas.

Lemma 5.3. If E has the property P then £ is strictly convex.

Since the proof of this lemma is quite straightforward, it will be

omitted.
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Lemma 5.4. If E has the property P then orthogonality in £ is sym-

metric.

Proof. By Lemma 5.3, E must be strictly convex and hence a

nearest-point map is unique whenever it exists for a closed convex

set. Suppose that neither y nor x is the origin and that y _Lx. The line

Ex is uniquely proximinal and the nearest-point map / exists for Rx.

Since EyC (£*)«>/(Xy) =d> for any X£E. Now E has the property P,

so ||x|| =||/(x) — /(Xy)|| S=||x— Xy|| for any X£E, i.e., xE(Ry)* or x_Ly.

Thus, orthogonality is symmetric.

If the dimension of E is at least three, the Day-James theorem men-

tioned above, together with Lemma 5.4, proves that if £ has property

P it is an inner-product space.

Lemma 5.5. Suppose that E is two-dimensional. If £ is strictly convex

and orthogonality is symmetric then £ has the property P.

Proof. Suppose the nearest-point map/exists for a closed convex

set 5 and suppose x, yEE. We can assume that/(x) =<b. There exists

a point Z9*<p such that zi-/(y) and, since £ is strictly convex, w±.f(y)

implies wERz [5, Theorem 4.3]. Let 7 be the open half-space de-

termined by Rz which contains/(y) and let K be the open half-space

determined by Rz+f(y) which contains <2>. If x£7 there exists a

unique a£E such that x — af(y)±f(y) [5]. Now, a>0 since x — af(y)

ERz and x is on the same side of Ezas is/(y). Thus, using strict con-

vexity again, ||x — a/(y)|| <[|x||. As in the proof of Theorem 5.1 we

conclude that x(£7. A similar argument shows that yEK- Thus,

||x— y\\ is no less than the width of KC\J. Now, by symmetry of

orthogonality, f(y) -Lz and so the distance from f(y) to Rz is attained

at <p. Hence the distance from Rz+f(y) to Rz (which is the width of

JC\K) is equal to ||/(y)|| and therefore ||/(y)|| ^||x-y|[.

It is not hard to see that neither strict convexity nor symmetry

can be omitted in Lemma 5.5, since P implies both and there exist

examples showing that neither implies the other.

The following theorem shows that the "shrinking" property of near-

est-point maps is pretty well restricted to those which exist for con-

vex sets.

Theorem 5.6. Suppose that E is strictly convex and that a nearest-

point map f exists for the closed set SEE. Then S is convex if f shrinks

distances.

Proof. If S is not convex there exist distinct points x and y of 5

such that ]x, y[CE~>S. Letting z = (l/2)(x+y) we see that one of
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||*— /(2)||i l|y— /(2)|| 1S greater than (l/2)||x—y||. (This is obvious i'

f(z) is x or y, while if f(z)?*x, y and neither ||x—/(z)|| nor ||y— f(z)

is greater than (l/2)jjx—y||, strict convexity implies that ||x—y

<||x—/(z)||+||y—/(z) [ g||x—yjj, a contradiction.) Suppose, then,

that ||x—/(z)|| >(l/2)||x—y|| =ffx —z||. Since/(x)=x, this contradicts

the assumption that/shrinks distances. We get the same contradic-

tion if ||y— /(z)|| >(l/2)||x —y||, hence 5 must be convex.

A simple two-dimensional example can be constructed to show that

we need to assume strict convexity in the above theorem.

Since every closed subset of Euclidean re-space En is proximinal,

Theorems 5.1 and 5.6 combine to give the following corollary.

Corollary 5.7. Let f be a nearest-point map for the closed set 5CF".

Then S is convex if and only iff shrinks distances.
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