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These remarks are the result of an investigation into the connec-

tions among the spectra of the various operators defined on the se-

quence spaces lp by the same infinite matrix.

We will have need of the following notation. Let [lP] denote the

algebra of bounded linear operators mapping the sequence space lp

into itself. If A is an infinite matrix which defines an element of [lP]

(we shall sometimes use the statement A £ [lp] to express this state of

affairs), we shall denote that operator by Ap. We shall denote the

transpose of the matrix A by A'. Let 11-4*11 denote the norm of the

operator Ap on the sequence space /„, and let o~(Ap), \<t(Ap)\ and

p(Ap) denote its spectrum, spectral radius and resolvent set respec-

tively. If T is the operator defined by the infinite matrix (tn) we shall

denote by T the operator defined by the infinite matrix (hi), where

z denotes the complex conjugate of the complex number z. Similarly,

if we have a vector x=(£i, l-2, • ■ ■ ), then x will denote the vector

(h> h> ' ' ' )• The symbol lP(n) will denote the vector space of n-

tuples of complex numbers, such that if x = (£i, £2, • • • , £n)£2p(n),

then |H|p=(E"=i |£»lp)l/p- Given a number p, p' will denote the

number p/(p—l) if l<p<<*>, and will denote » or 1 respectively,

according as p = 1 or p = 00. The statement "q lies between p and p'"

will mean p g q ̂ p' or p' ^ q g p respectively, according as 1 ̂  p ^ 2 or

2<p^ CO.

M. Riesz has proved that if A is a matrix transformation of h/a(n)

into liif(m) and Mae is its norm, then Ma$ as a function of the point

(a, B) has the property that log (Map) is a convex function in the tri-

angle O^a^l, O^jS^l, a+B^l, [2, pp. 466-471]. G. O. Thorin
has shown that the theorem actually holds for the entire first quad-

rant of the a/3-plane, [4, pp. 5-6].

This result, with the use of a limiting process, implies the following

inequality

(i) IMi/0||-tt ^ Mv.iMUv.lh"
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where 0 gagbgc. (It is understood that if a = 0, 1/a is replaced by

oo.) For the case where l^plglrg oo, this gives

(2) \\Aq\\   g  II^IICr-GJWCr-^ll^llls-pJr/tr-p)^

it being understood that if r= oo, then (r — q)/(r — p)=r/(r — p) = l.

(For the case where p = 1, q = 2, and r = oo, this is simply a reformula-

tion of a theorem due to J. Schur [3, p. 6].) Or, since it can easily

be shown that ||-4p'|| = ||(.<4%||, if we let 1 gpg oo and let a lie be-

tween p and p' we can restate (2) as

(3) \\Aq\\ g \\A,\\t>+<il-*»i<*-*><\\(At)p\\to-*M*-*):

We note that (2) implies that if 1 gpgqgrg, oo and A belongs to

both [lp] and [lr], then A E [lq] and that (3) implies that if 1 gpg oo,

q lies between p and p', and both A and A' belong to [lp], then

AE[h].
Borrowing from the phraseology of M. Riesz, we state the following

theorem.

Theorem 1. If AE[h/<.] for each a, OSagl, then \ff(Ai/a)\ as a

function of the number a has the property that log | a(-4i/a) | is a convex

function for 0 ^ a g 1.

Proof. We know that lim„,M ||(^i/a)n||1/n= |a(yli/a)| provided

O^a^l, and (1) implies that

|Mi/0HI(c-0"" ^ \\(Ai/a)»\\<°-»i»\\(Ailc)»\\«>-vi«,

for 0 ±£a £b gc ^ 1. If we let n approach infinity, we obtain

(4) | a(Ailh) |— g   | a(A1/a) |-*| <r(^1/c) |*-f

which is the desired result.

When 1 gpgqgr we can restate the inequality (4) as

(5) \<r(Aq)\     g    I d(Ap) |(r-«)W(r-P),|  vfA^ |(«r-P)r/(r-p),

provided A belongs to both [lP] and [/,].

In the special case where 1 gpg oo and a lies between p and p',

we can use the well known fact that o-(AP') =a((A')P) together with

the inequality (5) to derive the following inequality, provided both A

and A' belong to [/„].

(6) \<r(Aq)\   ^   | <r(i!,)|(»+«(1-'>"(!-''»«| a((A)P)Yq-p'>l<-2-r's>q.

Using the inequality (5) we can immediately state the following

theorem.

Theorem 2. Suppose that T belongs to both  [lp] and  [lr], that
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1 ̂ £ ^2 =r = °° and that |o-(Fj,)| 9* |o(Tr) \. Then either

\<r(Tp)\   >   \a(Tq)\      or     \ a(Tr) \   >   | <r(Tq) 1

according as

I <x(Tp) I   >   I a(Tr) I      or     | cr(Tr) \   >   \ <r(Tp) | ,

re5/>ec/we2y.

The inequality (6) together with fact that if q lies between p and p',

then so does q', and the fact that |c(4,')| = |o-((4')o)| imply the

following theorem.

Theorem 3. Let both T and Tl belong to [lp], 1 ̂ p g co, let q lie

between p and p' and let \ o(TP) \ 9* \ <t((T')p) \. Then either

\a(Tp)\   >   \c(Tt)\    or     \<r((T')p)\   >   \a((T>)q)\

according as

I a(Tp) I   >   I o-((F%) I      or     I a((T')p) \   >   | a(Tp) \ ,

respectively.

We shall now use the inequalities (2) and (3) to derive some set

relationships among the spectra of the operators defined on the se-

quence spaces lp by the same infinite matrix.

Theorem 4. Let T belong to both [lp ] and [lT ] and let l^p^q^r^ <».

Then

(a) a(Tq) E<r(TP)\Jc(Tr),

and

(b) if C is any component of <r(Tq), then the set Cr\(cr(Tp)r\cr(Tr))

is nonvoid.

Proof, (a) Assume that \Ep(Tp)r\p(Tr). This implies that

(KI—T)-1 belongs to both [lp] and [lr]. From (2) we infer that

(X7-r)-'£ [/,], whence X£p(F8). We have thus proved that

P(Tp)nP(Tr)EP(Tq),

whence, by complementation, we have

o-(Tp)Vo-(Tr)Dcr(Tq).

(b) Let us assume that Cr\(o-(Tp)r\cr(Tr)) is void. It is clear that

CP\c(Fp) and Cf\a(Tr) are both closed, and by our assumption they

have no point in common; moreover, it can be shown that they are

both nonvoid [l, p. 288]. But
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C= (C n <r(T,)) V (C n <r(TT))

since, by (a), o-(Tq)Eo-(Tp)\Jcr(Tr). We are therefore forced to con-

clude that C is not connected, which is in contradiction to our assump-

tion that C is a component.

We note that (b) implies, among other things, that a(Tp) and

a(Fr) always have points in common.

Theorem 5. Suppose that both T and T' belong to [/„], 1 gpg oo,

and q lies between p and p'. Then

(a) o-(Tq)Eo-(Tp)Va((T')p),

(b) a(T2) C <r(Tq) U o-((T)q) C *(TP) U *((T%),

and

(c) if C is any component of ff(Tq), then the set

Cr\(a(Tp)r\a((T%))

is nonvoid.

Proof. The statements (a) and (c) are proved in the same manner

as statements (a) and (b) of Theorem 4 except that the inequality

(3) is used instead of the inequality (2). The first containment of the

statement (b) results from lettinga = 2 in (a), and the second contain-

ment results from (a) combined with the application of (a) to TK

Combining the result (b) of Theorem 5 with the classical result

that the spectrum of a bounded operator defined on l2 by a hermitian

symmetric matrix is real, we obtain the following theorem.

Theorem 6. i/ TE [lP], T=T' and 1 gp g oo then

*(T2) C c(Tr).

Proof. Since if xElP, x—»x gives an isometric isomorphic mapping

of lp onto itself we see that if F£ [/,,], then a(Fj,)=Conj [a(Tp)].

Thus, since by hypothesis, (T')p= Tp,wehavea((T')p) = Conj [a(Fp)];

whence result (b) of Theorem  5 implies that

o-(T2) E*(TP) WConj [c(Tp)].

Knowing from a classical result that Ti = (Tt)i implies that o(T2) is

real, we are led to the desired conclusion.

Our final theorem was suggested by Professor Angus E. Taylor.

Theorem 7. If 1 gp ga, T belongs to both lP and lq, and \Ep(Tq),

then a necessary and sufficient condition that \Ep(Tp) is that

(\I - T)(lq - lp) Qh- lP.
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Proof. Suppose that X£p(Fp). Then X7— T maps lp onto lp in a

1-1 manner; and since by hypothesis \Ep(Tq), X7—Fmaps /gonto lg

in a 1-1 manner. Hence

(X7 - T)(lq - lp) =lq- lv.

Now suppose that (X7 — T)(lq — lp) Eh ~ h- It follows that
(X7 — T)~HP 3 lp, for if x £ lp and (X7 — T)x = y, then y £ lp and
(X7— T)~1y=x, whence x£(X7— T)~HP. If we now assume that

xE((\I-T)~l(lp)-lP), then x=(X7-F)-1y, where y£/„ and x£/3>.

But (X7—F)x=y, which implies that yElq — lP by our assumption

that Q^I—T)(lq — lp)Eh~h- This is a contradiction and we are thus

led to the conclusion that (X7— T)~l(lp) —lp is void, and this with our

earlier conclusion implies that lp = (\I—T)~1lp. Thus we see that

(X7— F)-1 (and hence alsoX7— T) sets up a 1-1 map of lP onto lp. From

this it follows that (X7— T)"1 is bounded, for it is known that the

inverse of a linear 1-1 map of a Banach space onto itself is bounded.

The desired conclusion follows immediately.
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