CONTINUITY PROPERTIES OF DERIVATIVES OF SEQUENCES OF FUNCTIONS

G. R. MACLANE

In a recent paper Dvoretzky [1] discusses an interesting generalization of a theorem of Walsh [2]. A striking supplement to Dvoretzky's theorem is the following one.

Theorem. There exists a sequence of functions

\[\{f_n\}_{n=1}^{\infty}, \quad f_n \in C^1(-\infty, \infty), \]

with \(\lim_{n \to \infty} f_n(x) = 0 \), such that: if \(N_1 \) is any subsequence of the natural numbers with the property that there exists a sequence \(x_{n_1}, \quad n_1 \in N_1 \), satisfying

\[f'_{n_1}(x_{n_1}) = 0, \quad \text{and} \quad \lim_{n_1 \to \infty} x_{n_1} = 0, \]

then the sequence \(N_2 \) complementary to \(N_1 \) (i.e., \(N_2 \) contains exactly those natural numbers omitted by \(N_1 \)) is infinite and

\[\limsup_{n_2 \to \infty} \int_0^h |f'_{n_2}(x)| \, dx = \infty \]

for every \(h > 0 \).

Proof. Let \(\epsilon_n \downarrow 0 \) and let \(\{\lambda_n\} \) be the sequence 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, \ldots. Let \(\{\mu_n\} \) be a sequence of positive numbers such that

\[\epsilon_n \mu_n / \lambda_n \to \infty, \quad n \to \infty. \]

The functions \(f_n(x) \) shall be odd and

Received by the editors September 4, 1956.

1 This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under contract No. AF 18(600)-1135.
\[f_n(x) = \begin{cases} \varepsilon_n \sin \lambda_n x, & |x| \leq \pi/2\lambda_n, \\ \varepsilon_n \cos \mu_n \left(x - \frac{\pi}{2\lambda_n} \right), & x > \pi/2\lambda_n. \end{cases} \]

It is easily verified that \(f_n \in C^1 \) and \(f_n(x) \to 0 \). The smallest zeros of \(f_n'(x) \) are \(\pm \pi/(2\lambda_n) \). Because of (1) and the nature of \(\lambda_n \), any possible \(N_2 \) will contain infinitely many \(n_2 \) associated with each possible value of \(\lambda \). Thus \(N_2 \) splits into disjoint infinite sequences \(M_p, p \geq 1 \), such that

\[\lambda_{m_p} = p, \quad m_p \subseteq M_p. \]

For a given \(h > 0 \), choose \(p \) such that \(\pi/p \leq h \). Then

\[
\int_0^h |f'_{m_p}(x)| \, dx > \int_{\pi/(2p)}^{\pi/p} |f'_{m_p}(x)| \, dx \\
= \varepsilon_{m_p} \mu_{m_p} \int_{\pi/(2p)}^{\pi/p} \left| \sin \mu_{m_p} \left(x - \frac{\pi}{2p} \right) \right| \, dx \\
= \varepsilon_{m_p} \int_0^{\pi/(2p)} \left| \sin \frac{\mu_{m_p}}{p} \right| \, dt \geq \varepsilon_{m_p} \left[\frac{\mu_m}{p} \right],
\]

and (2) follows from this inequality and (3).

Finally we note that Dvoretzky’s use of the word “clearly” in the third line after equation (6) is dubious.

References

The Rice Institute