Quasi-reflexive spaces
HTML articles powered by AMS MathViewer
- by Paul Civin and Bertram Yood
- Proc. Amer. Math. Soc. 8 (1957), 906-911
- DOI: https://doi.org/10.1090/S0002-9939-1957-0090020-6
- PDF | Request permission
References
- Stefan Banach, Théorie des opérations linéaries, Warsaw, 1932.
- J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057–1071 (French). MR 27440
- W. F. Eberlein, Weak compactness in Banach spaces. I, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 51–53. MR 21239, DOI 10.1073/pnas.33.3.51
- H. H. Goldstine, Weakly complete Banach spaces, Duke Math. J. 4 (1938), no. 1, 125–131. MR 1546039, DOI 10.1215/S0012-7094-38-00410-7
- Robert C. James, Bases and reflexivity of Banach spaces, Ann. of Math. (2) 52 (1950), 518–527. MR 39915, DOI 10.2307/1969430
- M. Krein and V. Šmulian, On regularly convex sets in the space conjugate to a Banach space, Ann. of Math. (2) 41 (1940), 556–583. MR 2009, DOI 10.2307/1968735
- George W. Mackey, On infinite-dimensional linear spaces, Trans. Amer. Math. Soc. 57 (1945), 155–207. MR 12204, DOI 10.1090/S0002-9947-1945-0012204-1
- R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc. 48 (1940), 516–541. MR 4094, DOI 10.1090/S0002-9947-1940-0004094-3
Bibliographic Information
- © Copyright 1957 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 8 (1957), 906-911
- MSC: Primary 46.2X
- DOI: https://doi.org/10.1090/S0002-9939-1957-0090020-6
- MathSciNet review: 0090020