A T-SYSTEM WHICH IS NOT A BERNSTEIN SYSTEM

RICHARD G. LONG

(I) Let E be a separable real Banach space, let $\{u_i\}_{i=1}^\gamma$ be a fundamental\(^2\) linearly independent sequence (finite or infinite) of points of E, and for each $0 \leq n < \gamma + 1$, let L_n be the linear extension of $\{u_i\}_{i=1}^n$, with $L_0 = \{\phi\}$. Then, $\{u_i\}_{i=1}^\gamma$ is called a T-system for E if for each x in E and for each $0 \leq n < \gamma + 1$ there is a unique $P_n(x) = \sum_{i=1}^n x_{i,n}u_i$ in L_n such that $\|x - P_n(x)\| = \inf_{Q \in L_n} \|x - Q\|$. The deviation sequence, $\{\delta_i(x)\}_{i=0}^\gamma$ of x relative to $\{u_i\}_{i=1}^\gamma$ is defined by the conditions: (1) $|\delta_i(x)| = \|x - P_i(x)\|$ for all $0 \leq i < \gamma + 1$ and (2) for $0 \leq i < \gamma + 1$, if $\delta_i(x) \neq 0$, then sgn $\delta_i(x) = $ sgn $x_{i',i'}$, where i' is the least integer greater than i for which $x_{i',i'} \neq 0$. If $\{\delta_i(x)\}_{i=0}^\gamma = \{\delta_i(y)\}_{i=0}^\gamma$ implies that $x = y$, then the T-system $\{u_i\}_{i=1}^\gamma$ is called a Bernstein system for E.

The definitions of T-systems and Bernstein systems were essentially introduced by Kadec in [4], in generalizing some results of Bernstein [2]. The proofs in [2] and [4] show or can be used to show that any two separable Banach spaces are homeomorphic if they possess Bernstein systems of the same cardinality and that for finite dimensional spaces every T-system is a Bernstein system. Now, given a separable Banach space we can always find a fundamental linearly independent sequence of points in it and by strictly convexifying the space [3] such a sequence becomes a T-system. In [4], Kadec states as an open question: Is every T-system a Bernstein system? Since every separable infinite dimensional Banach space has a T-system under some equivalent norm, an affirmative answer to this would have proved that all such spaces are homeomorphic.

It is the purpose of this paper to exhibit a T-system which is not a Bernstein system. In (II), we describe such a system for the space c_0 under a norm equivalent to the usual sup norm.

We note that Kadec [4] showed that c_0 does possess a Bernstein system.\(^1\)

Presented to the Society December 29, 1956; received by the editors December 19, 1956.

\(^1\) This research was supported in part by the National Science Foundation.

\(^2\) Most terms not defined in the text may be found in Banach [1].
system under a norm equivalent to the sup norm and that in a more recent paper [5] he has modified the T-system method of increasing subspaces to a method of decreasing subspaces to prove that all separable infinite dimensional uniformly convex spaces are homeomorphic. The question as to whether or not every separable infinite dimensional Banach space possesses a Bernstein system is apparently still open. It also appears to be undecided whether or not the sequence of powers $\{x^i\}_{0}^{\infty}$ which is a T-system for $C[0, 1]$ under the uniform norm is actually a Bernstein system under that norm.

(II) We consider $(c_0, \|\| - \|\|)$, the space of sequences of real numbers converging to 0 with the usual norm, $\|\{x_i\}_1^{\infty}\| = \sup_{i \leq k < \infty} |x_i|$. We now give c_0 a norm due to Nikol'skii [6] which is equivalent to $\|\| - \|\|$

$$
\|\{x_i\}_1^{\infty}\| = \sup_{0 \leq k < \infty} \left(\sum_{i=1}^{k} \frac{|x_i|}{k+1} + \sup_{n>k} |x_i| \right).
$$

We now consider the sequence $\{u_i\}_1^{\infty}$ of points of c_0 for which u_i is the sequence null in every term except the ith where it is 1. Since $\{u_i\}_1^{\infty}$ is a basis for $(c_0, \|\|-\|\|)$, it is certainly a fundamental linearly independent sequence in $(c_0, \|\|-\|\|)$. Further, $\{u_i\}_1^{\infty}$ is a T-system for $(c_0, \|\|-\|\|)$, since for every $x = \sum_i x_i u_i$ and for every non-negative n, $\|\sum_{i=n+1}^{\infty} x_i u_i\| < \|\sum_{i=1}^{\infty} x_i u_i\|$ if $x_n \neq 0$. Thus, $P_n(x) = \sum_{i=1}^{n} x_i u_i$.

The result to be shown here is:

Theorem. $(c_0, \|\|-\|\|)$ is a separable infinite dimensional Banach space with a T-system which is not a Bernstein system.

Proof. We let d be a real number ≥ 4 and construct the sequences $a = \{e_i/i!\}_1^{\infty}$ and $b = \{f_i/i!\}_1^{\infty}$ according to: $e_1 = d+1; f_1 = d; \text{ for } i \text{ even, } e_i = (i-1)e_{i-1}+1, f_i = e_i+1; \text{ and for } i \text{ odd, } i \neq 1, f_i = (i-1)f_{i-1}+1, e_i = f_i+1$. The following lemmas will complete the proof of the theorem:

Lemma 1. a and b are in c_0.

Lemma 2. For all $1 \leq i < \infty$, $\|\sum_{j=1}^{i} (e_j/j!) u_j\| = \|\sum_{j=1}^{i} (f_j/j!) u_j\|.$

To prove Lemma 1, it suffices to show that $\lim_{n \to \infty} g_n/n! = 0$, where $g_1 = d+1$ and $g_i = (i-1)g_{i-1}+2$. It is easily shown by induction that $g_n/n! \leq (d+2)/n+(2/n)(\sum_{j=1}^{n-1} 1/j!)$, and Lemma 1 follows.

For the proof of Lemma 2, we will need:

(A) For all $1 \leq i < \infty$, $e_i/i! > e_{i+1}/(i+1)! \geq [i/(i+1)]e_i/i!$ and similarly for the f_i;

(B) For all $1 \leq i < \infty$ and $m \geq i$,
\[(e_i + e_{i+1})/(i+1)! \geq \left(\sum_{k=i}^{m} e_k/k! \right)/(m+1) + e_{m+1}(m+1)!,\]

and similarly for the \(f_i\); and

(C) For all \(1 \leq i < \infty\), \((e_i + e_{i+1})/(i+1)! = (f_i + f_{i+1})/(i+1)!\). To prove (A), we simply examine the cases of \(i\) even and \(i\) odd. For (B), it suffices to show that for each \(i\) and for each \(m \geq i+1\),

\[\left(\sum_{k=1}^{i-1} e_k/k! \right)/m + e_m/m! \geq \left(\sum_{k=i}^{m} e_k/k! \right)/(m+1) + e_{m+1}/(m+1)!,\]

or, equivalently, that \([1/m(m+1)] \sum_{k=i+1}^{m-1} e_k/k! \geq (e_{m+1} - me_m)/(m+1)!\). Now, by the definition of the \(e_i\) we always have \(e_{m+1} - me_m \leq m+2\), so we need only show that \([1/m(m+1)] \sum_{k=i+1}^{m-1} e_k/k! \geq (m+2)/(m+1)!\). This, however, certainly holds if \(e_{m-1} \geq m+2\) and the latter can be easily shown by induction. The proof for the similar case with the \(f_i\) follows in the same way. We note that for \(m=2\), \(f_{m-1} = f_1 = d \geq 4 = m+2\) which explains our restriction on \(d\). To prove (C), we need only use the equations defining the \(e_i\) and \(f_i\).

Now, to complete the proof of Lemma 2, for \(q = \sum_{i=1}^{\infty} q_i u_i\), an element of \(c_0\), let \(q^i = \sum_{j=1}^{i} q_j u_j\) and let \(\|a\|_k = (\sum_{j=1}^{i} |q_j|)/(k+1) + \sup_{n>k} |q_n|\). Then, by (A), \(\|a^i\|_k = e_i/k!\) for \(k \leq i - 1\) and \(\|a^i\|_k = (\sum_{j=1}^{i} e_j/j!)/(k+1) + e_{k+1}/(k+1)!\) for \(k \geq i\) and similarly for \(b\). But, \(\|a^i\| = \sup_k \|a^i\|_k\), and so by (B), \(\|a^i\| = (e_i + e_{i+1})/(i+1)!\). Similarly, \(\|b^i\| = (f_i + f_{i+1})/(i+1)!\) and by (C), \(\|a^i\| = \|b^i\|\) to complete the proof of Lemma 2 and the proof of our theorem.

Bibliography

University of Washington