A NOTE ON FUNCTION QUANTIFICATION
J. W. ADDISON! AND S. C. KLEENE

In [7, p. 211] the question was raised whether, for £ >0, each predi-
cate expressible in both the 24 1-function-quantifier forms is hyper-
arithmetical in predicates expressible in the k-function-quantifier
forms. In this note we answer this question in the negative,? and use
our answer in comparing the hierarchies o, M1, Ny, - -+ and
80, 81. 82, -« of [7, XXIX].

The key to the question is that the following analogs of [5, (5) and
(6)] hold:

(1) ()(Ex)(EB)A(a(x), B) = (EB)(a)(Ex)A(a(x), M B(22=3Y),
) (E)(®) () A(a(), B) = (8)(Ea)(2) 4 (a(x), M B(22=31)).

To prove (1), assume (a)(Ex)(EB)A(a(x), B). For each s such that
(EB)A (s, B), let B, be such a 3; and for all other numbers s let 8, =N£0.
Then AufB,((#)1) is a function B such that (a)(Ex)A4(a(x),
\B(22®3%). So we have the implication from left to right. The con-
verse implication is immediate. (Formula (2) follows from (1) by
duality, as (6) from (5) in [5].)

We can apply (1) to express 2:(a) in both 2-function-quantifier
forms, as follows. Writing A\; for the representing function of &,
Qa) = ((E)T(@, ¢ %)= (E)TT' (M), ak), e a
=(a) (Ex) T (M (Ih(a(x))), &(x), a, ). Since T1'(Ai(Ih(s)), s, a, a) is
recursive in the 1-function-quantifier predicate &, by [7, XX] it is
expressible in both 2-function-quantifier forms. Now use these two
forms in the last expression for &(a), apply (1) in the case of the form
with existence first, and finally apply [5, Step 4, p. 316].

But & is of maximal hyperdegree for 1-function-quantifier predi-
cates, and . is of greater hyperdegree than & (cf. [7, XXIX]). So
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2 We first discovered this by adapting the proof of the invariance of the projective
classes (other than CA) under the operation (4) given in Kuratowski [8, §34, IX].
The proof we give here, using (1), is more direct; and indeed (1) yields a slightly more
direct proof of the classical theorem than either Kuratowski's or the simpler but less
clearly presented proof of Kantorovitch and Livenson [4].* Analogies between the
present theory and the hierarchies of descriptive set theory form the topic of (1,
Part I1], [2], and [3]; but this is the first instance of their use heuristically in the
present series of papers (the material of [5; 6; 7], and [10] was discovered inde-
pendently).
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£ is not hyperarithmetical in 1-function-quantifier predicates.

Thus the question is answered in the negative for 2=1. A negative
answer for any k=1 is obtained by showing similarly that
(@) (Ex)TT*(a, a, x) is expressible in both k4 1-function-quantifier
forms (Ni(a) = (a)(Ex)Ti(a, a, x), Na(a) =(Ea)(B)(Ex) T (a, a, x),

ce)3

Since M; is expressible in only one of the 2-function-quantifier forms
[7, XVIII], it is not hyperarithmetical in € (similarly to [7,
XXVIII)); so in hyperdegree ¥ lies properly between 9, and N,
[7, XXIX].

In fact, not only £, but the entire finite {-hierarchy @, &, &, - - -
(after Ro, &) and its extension into the transfinite up through the
constructive third number class (at least) lie properly between 9%
and N. in hyperdegree.

To formulate this precisely, we first define a system of notations
for the ordinals of the first three constructive number classes, extend-
ing the system S; (cf. [7, p. 199] or [6, p. 408, 01 —05]). The predi-
cates a0 and a<ob of S; we may now also write a&0,, and
a<,d (and for |a| finite, a€0,, and a<g,d); and the corresponding
predicates for the extended system a €0,, and a <s,b. The latter are
defined by an inductive definition of the same form as the former,
except for there being an additional direct clause: If (b)[6&E0
— {®:1(z, b) is defined and €O0,}] and (b)(c)[b<oc — Bi(z, b)
<5,P1(2, )], then 325:€ 0y, and (b) [6EO0—-®, (2, b) <5,3257].

Now our extension of the L:-hierarchy (for £ a natural number) is
the §,-hierarchy (for y&E0,,) which is established by the following
definition, analogous to that which establishes the Hy-hierarchy (for
¥&€0,,) as an extension of the Li-hierarchy (for ka natural number):
Pi1(a)=a=a. If y=2¢ and 3E0,,, H,(a)=(a)(Ex)TE**(a, a, x). For
1=1, 2: If y=23%5% and yE€O0,,

D212, ((0)0) i (a)1 € Oy

a = a otherwise.

$u(a) = {

To show that, for y&E0,,, 9, is of lower hyperdegree than N, it
will suffice to show that it is expressible in both 2-function-quantifier
forms. We can do this by the technique used in [5, §8]. Accordingly
we show that there is a primitive recursive function 7(y) such that,
for y&O0,,,

3 An alternative proof, adapted from Kantorovitch and Livenson [4],? uses in
place of (1) the formula («)(Ex)4 (&(x)) = (Ea)acq(*)A (a(x)) where Q=&(B)(E:)(Ej)
B =a()].
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H4(a) = (Ea)(8)(E) T5" ((r(3))o, a, )
= () (EB) ()T (r(»))1, a, %).

In Case 2 of the proof (as modelled on that of [5, Theorem 9]),
y=2% and 2&0,,. By the hypothesis of the induction,

©)

a,8
" $.() = (BB ENTT (@) 0, )
—a,f

= () (EB @) T1" ((r(2)y, o, %).
By definition,

Lo ' Co N
5) 940 = ()ENTI™(a, 0, %) = ()(EDNTL" @), o, 0)
(cf. [7,p. 209, 1. 12 from below ]). Consider T9='(s, a, a); if in the right
side of (4) we first replace 7(z) by a variable %, and then apply the
method of proof of [5, Theorem 5] using the resulting 2-function-
quantifier predicates in place of $., we obtain primitive recursive
predicates R and S such that

9,.1
T, (5; a, a) = (Eﬁ) (7)(Ew)R(u) s, a, B, v, w)
= (ﬂ) (E'Y) (w)S(uy s, a, B, 7, w)
when % =7(z). Using these two expressions in place of T9*!(s, @, a) in
(5), and applying (1) in the case of the first, and then [5, Step 4,
p. 316], we obtain primitive recursive predicates R, and S; such that
9u(a) = (Ea)(B)(Ex)Ra(%, o, @, B, x)
= () (EB)(%)S2(%, o, a, B, x)

when u=7(3). Finally replacing « in the right side of (7) by &,(¢, 2),
and applying [5, Lemma 12] for two function quantifiers, we obtain
primitive recursive functions ¢, and ¥. such that

$4(0) = (Ea)(B)(ED)T5" (#a(t, 2), 0, %)
—a,B
= (a)(EB)(x)Tl (‘/’2(1’ Z), a, x)
when ¢ is a Gédel number of 7. So for Case 2 it will suffice to take
T(y) = 29204 W) . 3¥2(t. o) for ¢ a Godel number of 7.

In Case 4, y=32%5¢ and yE0,,. By the hypothesis of the induction,
for each &0,

Doren(a) = (Ea)(B)(ED)T5" (((®1(z, B))o, a, @)
= () (EB) () T: " ((r(1(z, B)))1, a, %).

(6)

™

®)

©)

By definition,
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(10) 9.(a) = [Do,c.@n((0)0) & ()1 € O] V (a)1 & O,

where ®,(z, (a)1) and hence $g0s,a11)((@)0) may be undefined in the
case that (@), 0, but then ,(a) is true anyway. Now if in the right
side of (9) we first replace 7(®:(z, b)) by ®:1(¢, ®:1(z, (a)1)), and a by
(@)o, and then apply [S, Lemma 12], we obtain primitive recursive
predicates R, and S, such that

‘5‘1’1(2,(6)1)((‘1)0) = (EO() (B)(Ex)R4(t) 2, o, a, B3, x)
= (a)(EB) (x)S‘i(tv 3 q, q, B) x)

when (@) €0 and ¢ is a Godel number of 7. Replacing P, (2.1 ((@)0)
in the right side of (10) by the two 2-function-quantifier expressions
of (11), and (@): €0 by the 1-function-quantifier expression given by
[7, XXV] or [6, Theorem II], suitably advancing and contracting
quantifiers (cf. [5, §3]), and applying [5, Lemma 12], we obtain
primitive recursive functions ¢4 and ¥4 such that

(11)

$.(a) = (Ea)(B)(Ex)T: " (#4(t, 2), 0, )
= () (EB) () T: " Walt, 2), a, 2)

when ¢ is a Gddel number of 7. So for Case 4 it will suffice to take
7(y) =294(t.W2 . 3%t W2 for ¢ a Gédel number of 7.

Cases 1 and 3 offer no further difficulties, and the recursion theorem
is used to solve for a Godel number ¢ of 7 after combining the cases (cf.
the proofs of Lemmas 3-5 in [5]).

In getting this result we have used a basic theorem about the con-
structive second number class [6, Theorem II1], but only the defini-
tion of the constructive third number class. Further exploration of the
situation is planned in connection with the investigation of the con-
structive higher number classes, and the study of the analogies with
the hierarchies of point sets in analysis,* both referred to in [7, p.
212].

(12)
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