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In [7, p. 211] the question was raised whether, for k>0, each predi-

cate expressible in both the ^-fl-function-quantifier forms is hyper-

arithmetical in predicates expressible in the ^-function-quantifier

forms. In this note we answer this question in the negative,2 and use

our answer in comparing the hierarchies 9io, 9?i, %, ■ ■ • and

80, 81, 82, • • •   of [7, XXIX].

The key to the question is that the following analogs of [5, (5) and

(6)] hold:

(1) (a)(Ex)(EB)A(a(x), B) - (E0)(a)(Ex)A(a(x), \t /3(2»<*>3')),

(2) (Ea)(x)(8)A(a(x), 0) =- (8)(Ea)(x)A(a(x), Xt /3(2«<*>3')).

To prove (1), assume (a)(Ex)(E/3)/l(a(x), 8). For each s such that

iEB)A is, 8), let Bs be such a 8; and for all other numbers 5 let 8. = \t0.

Then Xm/3(u),((m)i) is a function 8 such that (a)(Ex)^4(a(x),

\tB(2a(-x)3i)). So we have the implication from left to right. The con-

verse implication is immediate. (Formula (2) follows from (1) by

duality, as (6) from (5) in [5].)

We can apply (1) to express 82(a) in both 2-function-quantifier

forms, as follows. Writing Xi for the representing function of 81,

82(a) = (a)(Ex)T!1-°(a, a, x) = (a)(£x)T11'1(X1(x), a(x), a, a)

= (a)(£x)rJ,1(X1(lh(a(x))), di(x), a, a). Since Tj'^X^lh^)), s, a, a) is

recursive in the 1-function-quantifier predicate 81, by [7, XX] it is

expressible in both 2-function-quantifier forms. Now use these two

forms in the last expression for 82(a), apply (1) in the case of the form

with existence first, and finally apply [5, Step 4, p. 316].

But 81 is of maximal hyperdegree for 1-function-quantifier predi-

cates, and 82 is of greater hyperdegree than 81 (cf. [7, XXIX]). So
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2 We first discovered this by adapting the proof of the invariance of the projective

classes (other than CA) under the operation (.4) given in Kuratowski [8, §34, IX].

The proof we give here, using (1), is more direct; and indeed (1) yields a slightly more

direct proof of the classical theorem than either Kuratowski's or the simpler but less

clearly presented proof of Kantorovitch and Livenson [4].a Analogies between the

present theory and the hierarchies of descriptive set theory form the topic of [l,

Part II], [2], and [3]; but this is the first instance of their use heuristically in the

present series of papers (the material of [5; 6; 7], and [10] was discovered inde-

pendently).
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S2 is not hyperarithmetical in 1-function-quantifier predicates.

Thus the question is answered in the negative for k = 1. A negative

answer for any k ^ 1 is obtained by showing similarly that

(a)(Ex)Tfk,a(a, a, x) is expressible in both k + 1-function-quantifier

forms (yii(a) = (a)(Ex)T?(a, a, x), 3l2(a) = (Ea)(^)(Ex)^(a, a, x),

Since 5R2 is expressible in only one of the 2-function-quantifier forms

[7, XVIII], it is not hyperarithmetical in 22 (similarly to [7,

XXVIII ]); so in hyperdegree 22 lies properly between Sfti and %

[7, XXIX].
In fact, not only 82, but the entire finite ^-hierarchy S2, ?3, ?4, • • •

(after £0, ?i) and its extension into the transfinite up through the

constructive third number class (at least) lie properly between 9?i

and 9t2 in hyperdegree.

To formulate this precisely, we first define a system of notations

for the ordinals of the first three constructive number classes, extend-

ing the system S3 (cf. [7, p. 199] or [6, p. 408, 01-05]). The predi-

cates a(EO and a<ob of S3 we may now also write aG0io and

a<i0b (and for \a\ finite, aGOo0 and a<o0b)', and the corresponding

predicates for the extended system a(E02o and a<2ob. The latter are

defined by an inductive definition of the same form as the former,

except for there being an additional direct clause: If (b)[b£zO

-* {*i(z, b) is defined and G02o}] and (b)(c)[b<0c-*$i(z, b)

<2o$i(z, c)], then 325*G02o and (b) [&GO->$i(z, &)<2o325*].

Now our extension of the St-hierarchy (for k a natural number) is

the §„-hierarchy (for yG.02(j) which is established by the following

definition, analogous to that which establishes the ii^-hierarchy (for

yGOi0) as an extension of the Z-t-hierarchy (for k a natural number):

§i(a)=a = a. If y = 2' and zEO^, ^y(a) = (a)(Ex)Tf"a(a, a, x). For

* = 1, 2: If y = 3j5'andyGOi0,

_   . .        f £>*!<*.(«h)((a)o) if (a)i G 0(i_i) ,

Ka = a otherwise.

To show that, for yG02o, §„ is of lower hyperdegree than SR2, it

will suffice to show that it is expressible in both 2-function-quantifier

forms. We can do this by the technique used in [5, §8]. Accordingly

we show that there is a primitive recursive function r(y) such that,

for yG02o,

8 An alternative proof, adapted from Kantorovitch and Livenson [4],1 uses in

place of (1) the formula (a)(Ex)A(s{x)) = (Ea)tte<)(x)A(a(ix)) where Q=&(p)(Ei)(Ej)



1004 J. W. ADDISON AND S. C. KLEENE [October

$„(o) - (Ea)(8)(Ex)T?\(T(y))o, a, x)

m ia)iEB)ix)Tai\iriy))i, a, x).

In Case 2 of the proof (as modelled on that of [5, Theorem 9]),

y = 2* and zG02o- By the hypothesis of the induction,

&(a) - (Ea)(B)(Ex)TT\(r(z))o, a, x)

- (a)(EB)(x)T?\(T(z))i, a, x).

By definition,

(5) &y(a) = (a)(Ex)Ti*' (a, a, x) = (a)(Ex)Ti'' (a(x), a, a)

(cf. [7, p. 209,1. 12 from below]). Consider Zf^s, a, a); if in the right

side of (4) we first replace t(z) by a variable u, and then apply the

method of proof of [5, Theorem 5] using the resulting 2-function-

quantifier predicates in place of Sqz, we obtain primitive recursive

predicates R and 5 such that

r?"V, a, a) m (E0)(y)(Ew)R(u, s, a, ft y, w)
(6)

- (8)(Ey)(w)S(u, s, a,0,y,w)

when u = t(z). Using these two expressions in place of Ti'^is, a, a) in

(5), and applying (1) in the case of the first, and then [5, Step 4,

p. 316], we obtain primitive recursive predicates R2 and S2 such that

$»(o) = (Ea)(B)(Ex)R2(u, a, a, ft x)

= (a)(E0)(x)S2(u, a, a,B,x)

when u = t(z). Finally replacing u in the right side of (7) by &i(t, z),

and applying [5, Lemma 12] for two function quantifiers, we obtain

primitive recursive functions <p2 and \p2 such that

$»(<») - (Ea)(B)(Ex)T"i\<b2(t, z), a, x)
(8) _a.S

= (a)(EB)(x)Ti   (Ut,z),a,x)

when t is a Godel number of r. So for Case 2 it will suffice to take

r(-y)=2*j<i'<»>o).3^((-(l')o> for t a Godel number of r.

In Case 4, y = 325z and yG02o- By the hypothesis of the induction,

for each &GO,

W.»)(<0 = (Ea)(B)(Ex)Tai\(r(^i(z, b)))o, a, x)

- (a)(E0)(x)ri\(T(*i(z, b)))u a, x).

By definition,
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(10) $„(a) - [$*1(.,<.)I)((o)o) & (a)i GO]V (a)i $ 0,

where ^(z, (a)i) and hence §*,(». to)i)((a)o) may be undefined in the

case that (a)iGO, but then &y(a) is true anyway. Now if in the right

side of (9) we first replace r(<i>i(z, b)) by $i(t, $i(z, (a)i)), and a by

(a)o, and then apply [5, Lemma 12], we obtain primitive recursive

predicates i?4 and Si such that

$»i(..(.)i)((o)o) = (Ea)(0)(Ex)Ri(t, z, a, a, $, x)

m (a)(E&)(x)Si(t,z,a,a,p,x)

when (fl)iGO and / is a Godel number of r. Replacing ^1(z,M1)((a)0)

in the right side of (10) by the two 2-function-quantifier expressions

of (11), and (a)iGO by the 1-function-quantifier expression given by

[7, XXV] or [6, Theorem II], suitably advancing and contracting

quantifiers (cf. [5, §3]), and applying [S, Lemma 12], we obtain

primitive recursive functions 4>i and \pi such that

$,(0) = (Ea)(et)(Ex)Tai\<t>i(t, z), a, x)

=- (a)(E$)(x)Ti\ii(t, •), a, x)

when I is a Godel number of t. So for Case 4 it will suffice to take

T(y)=2<Mt,(v)i).3M'M2) for / a Godel number of r.

Cases 1 and 3 offer no further difficulties, and the recursion theorem

is used to solve for a Godel number t of r after combining the cases (cf.

the proofs of Lemmas 3-5 in [5]).

In getting this result we have used a basic theorem about the con-

structive second number class [6, Theorem II], but only the defini-

tion of the constructive third number class. Further exploration of the

situation is planned in connection with the investigation of the con-

structive higher number classes, and the study of the analogies with

the hierarchies of point sets in analysis,4 both referred to in [7, p.

212].
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