DERIVATIONS IN PRIME RINGS!
EDWARD C. POSNER

We prove two theorems that are easily conjectured, namely: (1) In
a prime ring of characteristics not 2, if the iterate of two derivations
is a derivation, then one of them is zero; (2) If d is a derivation of a
prime ring such that, for all elements ¢ of the ring, ad(a) —d(a)a is
central, then either the ring is commutative or d is zero.

DEFINITION. A4 ring R is called prime if and only if xay=0 for all
a&R implies x=0 or y=0.

From this definition it follows that no nonzero element of the
centroid has nonzero kernel, so that we can divide by the prime p,
unless px =0 for all x in R, in which case we call R of characteristic p.

A known result that will be often used throughout this paper is
given in

LeMMA 1. Let d be a derivation of a prime ring R and a be an element
of R. If ad(x) =0 for all x &€ R, then either a =0 or d is zero.

PRrOOF: In ad(x) =0 for all xER, replace x by xy. Then
ad(xy) = 0 = ad(x)y + axd(y) = axd(y) =0

for all x, yER. If d is not zero, that is, if d(y) 0 for some yER, then,
by the definition of a prime ring, a =0.
The following lemma may have some independent interest.

LEMMA 2. Let R be a prime ring, and let p, q, r be elements of R such
that pagar =0 for all a in R. Then one, at least, of p, q, r is zero.

Proor. In pagar=0, replace a by a-+b; using pagar = pbgbr =0,
we find pagbr+pbgar =0, for all a, b in R. If now pa =0, then, for all
b in R, pbgar=0, so that p=0, or else gar=0. But if pa=0, then
pat=0 for all tER, so that p =0 or gatr =0 for all ¢ in R; again =0,
orelse ga=0. So p =0 or =0 or ¢a is zero whenever pa is zero; replace
a by aqar; since p(agar) =0 for all aER, we see that p=0 or r=0 or
gagar =0 for all a&R. Similarly, p=0 or r=0 or gagag=0 for all
a&€R. Assuming therefore that p#0, =0, replace a by a+b in
gagag=0 to find as before that gagbq+gbgag=0. In this equation,
replace b by agb to find
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(gagaq)bq+qagbgaq =0, (gagq)b(gaq) =0, for all bER, for all aER.
So gag=0 for all aER, ¢=0if p=0, r=0.
THEOREM 1. Let R be a prime ring of characteristic not 2 and d,, d,

derivations of R such that the iterate did, is also a derivation; then one at
least of dy, d is zero.

PROOF. did; is a derivation, so
d1ds(ab) = did2(a)d + adids().

However, d,, d. are each derivations so

d1d2(ad) = di(d2(ad)) = di(d2(a)d + ads(b))

= d1d2(a)b + da(a)d1(d) + di(a)d2(d) + adida(D).
But did:(ab) =did»(a)b+ad,ds(d), so
(1) ds(a)d(b) + di(a)d2(d) = 0 for all ¢, b € R.
Replace a by adi(c) in (1).
d2(adi(c))d1(b) + di(adi(c))d2(b) = O

for all a, b, cER.

d2(a)ds(0)ds(b) + adad()dr(B) + di(a)dr(c)da(b) + adi(c)da(B) = O.

Now a{ds(di(c))d1(b) +di(di(c))da(b)) =0, since ds(di(c))di(d)+d:
-(di(c))ds(b) =0, which is merely equation (1) with a replaced by
di(c). We are left, then, with

(2) ds(a)di(c)d (b)) + di(a)di(c)d2(b) = 0 for all a, b, c € R.

But di(c)da(b) = —d2(c)di(b) by (1) with ¢ replacing a. Then (2) be-
comes dy(a)di(c)di(b) —di(a)ds(c)di(b) =0; factoring out d;(b) on the
right, we have (d:(a)di(c) —di(a)ds(c))di(b) =0 for all b&R, for all q,
¢ER. Lemma 1 is just what we need to tell us that dy(a)di(c)
—dy(a)dy(c) =0 for all a, cER, unless d; is zero. But (1) with ¢ replac-
ing b tells us that instead ds(a)di(c)+di(a)ds(c) =0 for all a, cER.
Adding these last two equations, we find that 2d:(a)di(c) =0,
ds(a)dy(c) =0, (since R is not of characteristic 2), for all a, cER, or
else d, is zero. Using Lemma 1 again with ds(a) replacing a, we find
that d, is zero or else dy(a) =0 for all a ER, i.e. d=0 or dy=0.

In order to prove Theorem 2, we find it necessary to prove the fol-
lowing lemma.

LEMMA 3. Let R be a prime ring, and d a derivation of R such that
ad(a) —d(a)a=0 for all aER. Then R is commutative, or d is zero.
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Proor. (a+b)d(a+b)—(d(a+b))(a+b)=0 for all a, bER; sub-
tracting ad(a) —d(a)a+bd(b) —d(b)b=0 from this, we arrive at
ad(b) +bd(a) —d(a)b—d(b)a=0 for all a, b&R. Write this as

ad(b) — d(a)b = d(b)a — bd(a).
Add to this ad(b) +d(a)b=d(ab) to find
3) 2ad(b) = d(b)a — bd(a) + d(ab) for all ¢, 8 € R.
In (3), replace b by ax

2ad(ax) = d(ax)a — axd(a) + d(a®x),
or

2ad(a)x 4+ 2a%d(x) = d(a)xa + ad(x)a — axd(a) + 2ad(a)x + a2d(x),

since d(a?) =2ad(a); or

4) a¥d(x) = d(a)xa + ad(x)a — axd(a) for all @, x € R.
In (3), replace b by xa, and find similarly

(5) d(x)a? = ad(x)a + axd(a) — d(a)xa, for all ¢, » € R.
Add (4) and (5).

(6) a?d(x) + d(x)a® = 2ad(x)a for all ¢, x E R,
or

(N a(d(x)a — ad(x)) = (d(x)a — ad(x))a for all ¢, x € R.

Replace in (7) ¢ by a+d(x); we find that d(x) commutes with
d(x)a—ad(x), for all e ER, for all x in R; this says that the square of
the inner derivation by x is zero, for all x€R. Let R not be of charac-
teristic 2. Then Theorem 1 says that d(x) is central, for all x in R;
let @ be an element of R, and 4 denote inner derivation by a. ad(x)
=d(x)a, or Ad(x)=0 for all x€R. Theorem 1 again shows that
d=0 or, if not, then 4 is zero, every a in R is central, R is commuta-
tive. But if R is of characteristic 2, (6) says that for all x€ER, d(x)
commutes with all squares of elements of R. Let R be a prime ring of
characteristic 2, and let e©ER commute with a?, for all aER.

(8) a’e = ea? for all e € R.
Replace @ by a+b and use ea?=a?%, eb?=b2%.
9) (ab + ba)e = e(ab + ba) for all ¢, b € R.

In (9), replace b by ae and commute e and a?; then a2%?-+aeae =ea’e
+eaea; a’e’=ea’, so
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(10) aeae = eaea for all ¢ € R.
In (9), replace b by e; then ae?+eae =eae+ea,
(11) e? is in the center of R.

Consider (ae+ea)?=aeae+eaea+ae’a+ea’e. But aeae+teaca=0 by
(10), ae®a+ea’e=e?a®+e%?=0 by (11) and (8). We have

(12) (ae + ea)? =0 for all a € R.

Let x, ¥y now be elements of R with xy=0. By (9), (xy+yx)e
=e(xy+yx), so

(13) xy = 0 implies yxe = eyx.

Now x%y =0, so (13) becomes also yx2e =eyx?; yx?e = yex? since e com-
mutes with all squares. Thus

(14) xy = 0 implies (ye + ey)x® = 0.

But (ax)y =0 for all aER; then we can replace x by ax in (14), to
obtain (ye+ey)axax =0 for all eER, whenever xy =0. Lemma 2 now
says x=0 or ye+ey=0; in fact, since x(yv) =0 for all yER, Lemma 2
even says x=0 or yve+(ey)v=0 for all v&ER. Since ye=ey if x50,
then x=0 or yve+yev=0 for all vER, y(ve+ev) =0 for all vER.
Lemma 1 applied to the inner derivation by e shows that either
x=0, y=0, or e is central. But by (12) (ae+ea)(ae+ea) =0, for all
a€R; putting x=ae+ea, y=ae+tea, we find that for all a&R,
ae+ea=0, or e is central. That is, for all a ER, ae+ea =0, e is central
if e commutes with all squares in R.

For all x€R, then, d(x) commutes with all squares in R, d(x) is
central for all x€R. Let d(b) =0; for all a &R, d(ab) =d(a)b+ad(b)
=d(a)b; d(ab) is central, so d(a)b is central for all @ in R if d(b)=0.
Now if d is not zero, so that d(a) #0 for some a €R, we have d(a)bx
=xd(a)b; d(a) is central so xd(a)b=d(a)xb, whence d(a)(bx+xb)=0
for all x€R, if d(b) =0. But as previously remarked, no nonzero ele-
ment of the centroid of R has nonzero kernel; since we are assuming
d(a)#0, and since d(a) is central, we have proved that b is central
whenever d(b) =0. But for all cER, d(c?) =d(c)c+cd(c) =2d(c)c=0,
so ¢? commutes with all x in R, for all cER. Referring back to the
conclusion of the previous paragraph with x for e shows x central for
all xER, if d is not the zero derivation.

The following lemma may also be of independent interest.

LEMMA 4.2 Let A be a Lie ring, I an ideal of A, d an element of A such

2 An oral communication from Professor Kaplansky.
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that dx-x=0 for all x&I. Then for all aER, (da-x)x=0 for all xEI
(.e. the set of d satisfying dx-x=0 for all xE I is an ideal of A).

ProoF. Let R, denote right multiplication by ¢. We want to prove
d(R,R%) =0 for alla€ A4, x&I. The Jacobi identity for a Lie ring may
be written as R,,=R,R,— R,R,. Furthermore, since I is an ideal, it
contains ax, and x-+ax, for all aE A4, so that (d-ax)ax =0, (d(x+ax))
-(x+ax)=0 for all a€A. From these two equations, and from
dx-x=0, we get dx-ax+(d-ax)-x=0 for all a€E A4, x&I, or, in the
other notation, d(R;R.;+ R..R.) =0. But from

d(RzRaz + Rasz) = d(Rz(RaRz - RzRa) + (RaRz - -RzRa)Rz)
= d(R.R.R, — R:R. + R.R: — R.R.R,) = d(R.R. — R.R.),

d(R.R:—RiR,) =0 for all a€4, x&I. By hypothesis, d(R2) =0, so
that d(R,R2) =0 for all a€ A4, x&1. This is exactly what we had to
prove.

We are now ready for Theorem 2.

THEOREM 2. Let R be a prime ring and d a derivation of R such
that, for all a &R, ad(a) —d(a)a is in the center of R. Then, if d is not
the zero derivation, R is commutative.

PRroOOF. Let 4 be the Lie ring of derivations of R and I the ideal of
A consisting of inner derivations. Let, for ¢ ©R, I, denote inner
derivation by a. Let [d, d»] for di, d:EA denote the (commutator)
product of derivations in 4. We are assuming [(d, I.), I.]=0. By
the preceding lemma, for all x&R, that is, for all I.EI,
[[[d, I]I.]I.] =0 for all aER. That is, a(ad(x)—d(x)a)— (ad(x)

—d(x)a)a is central for all x, a ER,

(15) a%d(x) 4+ d(x)a® — 2ad(x)a is central for all x, ¢ € R.
Commute (15) with a.

(16) 3ad(x)a® + a¥d(x) = 3a%d(x)a + d(x)ad.

Suppose R is of characteristic 3. Then for all a€R, I,*d =0. Theorem
1 says that d is zero, or else every a? is in the center of R; if this is the
case, then for all @, bER, (a+b)*—a*—b*=a?b+aba+ba?+b2a+bad
+ab*is central; replace a by —a to find a%+aba+ba?— (b%a+bab+ab?)
central for all @, & R; adding these last two and dividing by 2, we see
that a?b+aba+ba® is central, for all a, b&ER. Replace b by ab:
a*b+a’ba-+aba®=a(a?b+aba+ba?) is central; if a%b-4aba+ba? is not
zero, given a, for some b, then, since it is central, we can divide by it,
whence a would be central. So assume that R has the property that
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for all ¢, bER, a®b+aba+ba?=0. This reads, since R is of character-
istic 3, as a(ab—ba) — (ab—ba)a =0 for all bER, I?=0; by Theorem
1, a is central, R is commutative.

Suppose now that R is of characteristic different from 3. Write
d(x)=«". In (16), replace x by a: 3aa’a’+a%’ —3a%’'a—a’a*=0, or
a*a’ —a’a*=3a%’a—3aa’a*=3a(aa’ —a’a)a. Since aa’ —a’a is central
by the hypothesis of this theorem, we find

17) aa’ — d'a® = 3(ad — d'a)d?, for all ¢ € R.

Furthermore, (a2’ —a’a)a=aa’a —a’a®. But (aa’ —a’a)a=a(aa’ —a’a)
=a%’ —aa’a; adding these last two, we obtain

(18) 2(ad’ — d’a)a = a%a’ — d'a>.
In (16), replace x by ax’.
3a%x"a? + a*a’’ — 3a%x"'a — ax''a® + 3ad’x’a® + aPa’x’
— 3a%'x'a — d'x'a® = 0.
However,
3a%x"a*> + a*x” — 3a%%""a — ax'’a®
= a(3ax"a® + a®x"" — 3a%"’a — x"'a%) = 0,
as is seeen from (16) by replacing x by x’. So
(19) 3aa’x’a? 4+ add’x’ — 3a%d’x’'a — a’x'a® =0 for all x, a € R.
Multiply (16) on the left by a’.
(20) 3a’ax’a? + a’a®x’ — 3a’a*’a — a’x’a® = 0.
Subtract (20) from (19):
3(ad’ — da)¥a® + (a%d’ — d'a®)x’ — 3(a%d’ — a’a®)ax’a =0
for all x, a € R.
Using (17) and (18), we arrive at, after dividing by 3,
(aa’ — d’a)(x'a? 4+ a’x’ — 2ax’a) = 0 forallx,a € R.
If aa’ —a’a#0 for some qa, then for that a, and all x,
(21) x'a? 4+ a?’ — 2ax’a = 0.
Replace x by ax in (21):

ax’a® + adx’ — 2a2x’a + a’xa® + a?d’x — 2ad’xa = 0;
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since
ax’a® + a3’ — 2¢%¢’a = a(x’a® + a®’ — 2a2’a) = 0
by (21), we have
(22) a'xa? + a%d’x — 2ad’xa = 0 for all x € R.

Now in (21) replace x by a: a’a*+a%’ —2aa’a=0. Multiply this on
the right by «.

(23) a'a?x + a*d’x — 2ad’ax = 0 for all x € R.
Subtract (23) from (22).
(24) a’(xa? — a%x) — 2ad/(xa — ax) =0 for all x € R.

Replace x by ax in (24).

(25) a’a(xa® — a’x) — 2ad’a(xa — ax) = 0 forallx E R.
Multiply (24) by a on the left.

(26) ad'(xa® — a®x) — 2a%'(xa — ax) = 0 forall x € R.
Subtract now (25) from (26):

(ad’ — a’a)(xa® — a®t) — 2a(ad’ — d’a)(xa — ax) = 0 forallx € R.
Since aa’ —a’a#0,

(27) xa® — a®x — 2a(xa — ax) =0 forallx € Rif ad’ — a’a # 0.

So xa®+a?c—2axa=0, alax—=xa)=(ax—xa)a, I>=0. That is, a is
central by Theorem 1 or else aa’ =a’a, if R is of characteristic differ-
ent from 2. So when R is of characteristic not 2, aa’ =a’a for all t ER;
Lemma 3 now finishes the proof. Let R finally be of characteristic 2.
(27) says aa’=a’a or else a? is central, for all eER. If aa’#a’a for
some a € R, a? is central and not zero. For if a? = 0 then (a?)’
=aa’+a’a=0, aa’=a’a. Then a is not a divisor of zero, since if
ya=0, ya®=0, y=0. Let xER; we shall prove that aa’ commutes
with x%. Either (axa)? is central, or (axe)(axa)’=(axa)'(axa). If
(axa)?is central, axa®xa is in the center of R. Then ax%a is in the center
of R, since a? is; call it ¢. Then aca =a% is in the center of R, and
equals a?x2a?. So a%c%? is in the center of R, and so is x2, whence x?
commutes with aa’ if (axa)? is central. On the other hand, if x? is not
central, then xx’'=x'x and (axa)(axa)’ = (axa)'(axa). Then (axa)
-(a’xa+ax’'a+axa’) = (a’xa+ax'a+axa’)axa, or

axaa'xa + axa’c’a + axa®xa’ = a’xa’xa + ax'a*ca + axa’axa.
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Now a?is central, whence
ax(ad’ + d’a)xa + (a(xx’ + 2'x)a 4+ ax’a’ + o’'x%a)a? = 0.
But xx’+x'x=0, and ea’+a’a is central so that
(ad’ + d’a)ax?e 4+ (ax?a’ + d’x%a)a® = 0.
Since a is not a right zero divisor,
(aa’ + da’a)ax® + (ax?ad’ + a'x%a)a
ax*(ad’ + d’a) 4+ (ax?d’ + d’x%a)a = 0,

ax?ad’ + axd’a + ax?ad’a + a’x%a? = 0.

Il
=

Thus ax?aa’ +a'x2a?=0; a? is central so ax?aa’+a%’'x*=0; a is not a
left divisor of zero so x%a’+aa’x*>=0, for any x such that x2 is not
central, hence, for all x&R, as promised; otherwise aa’=a’a. Re-
course to the latter part of Lemma 3 shows a? central and aa’ central
or else aa’ =a’a. But in the former case, a-aa’ =aa’-a; since a is not a
zero divisor, aa’ =a’a, for all a€ER. Lemma 3 completes the proof.
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