
MEAN VALUES AND BANACH LIMITS1

RALPH A. RAIMI

I. Introduction. For certain bounded real valued functions on the

real line, lim„ (1/2 a)flafix+t)dt exists uniformly in x, and is a

constant, w(/). On the space of such functions, the limit m(f) is a

translation-invariant positive functional of norm one, and hence gen-

eralizes the notion \im\x\^xf(x). For bounded sequences, such a func-

tional is often called a Banach limit ([l, pp. 83-84], and [5]).2 Norm

preserving extensions of m(f) to wider spaces will still be called

Banach limits. In sections II and III the properties of these exten-

sions will be explored, in particular their extreme values, and in sec-

tion IV a space will be exhibited for which all Banach limits are ob-

tained in this way.

The author wishes to express his appreciation of the assistance of

Professor S. Kakutani, to whom Theorem 3 is due, as well as nu-

merous suggestions and conjectures.

II. Preliminaries. Let £ be a complete normed linear space of real-

valued essentially bounded measurable functions on R, the real line,

with ll/ll =ess. sup. {\f(x) \ \ x£i?}, denoted hereafter merely by

sup* |/(x) I. That E is actually made up of equivalence classes of such

functions will be ignored in the sequel wherever no confusion thus

arises. We shall assume further that E contains all bounded uni-

formly continuous functions, and all translates of functions in E,

i.e. if/(x)£E, then/(x+.s)£E, for any sGR-

Let E' be the conjugate space of E, and L(E, E) the ring of con-

tinuous linear operators on E to E. For each sGR we define an ele-

ment TSGL(E, E) by rs:/(x)—s/(x+s). Denoting by R+ the set of

all positive real numbers, we define for each aGR+ the operation

Ta:fix)^il/2a)f_afix+t)dt.

Lemma 0. For anyfGE, «£i?+, Tafis a uniformly continuous func-

tion on the real line. In particular 7"a£L(£, E) for all a£i?+.

Proof. Let e>0 be given, and choose sGR such that | s\ <a, and

|s[<(ae/l |/11) .Then
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/a p a
f(x + t)dt -        f(x + l + s)dt

-a J —a

f(x + t)dt -   I       f(x+ t)dt
-a J -a+s

= (i/2«) I r /<*+Ddt ~ c sf(x+Ddt
I J -a J a

£(2||/|||*|/2«) <e,
independently of x.

If we set %= { Ta\aER+}, and denote the set of translation oper-

ators { Fs|s£.rv} by 21, we observe that the elements of £W3I com-

mute with each other.

Let £' denote the conjugate space of £. If TEL(E, £), T' will

denote the adjoint operator. T' is continuous on £' to £' when £' is

given its weak- * topology. This is the only topology on £' which will

be considered. If <j>'EE', fEE, (<f>', f) will denote the value of the

functional 0' at the point /.

If xER, and/is a continuous function, we denote by x' the "point-

functional" x': f—>f(x). If fEE is an equivalence class of functions

containing a continuous representative, we shall define (x', /) =/(x)

for that representative. Now x' becomes a functional defined un-

ambiguously on a closed subspace of £, and may be extended, with

preservation of the norm ||x'|| = 1, to any of a number of elements of

£'. In what follows, the symbol x' will represent any such element

of £', arising from the number xER, and the set of all such func-

tionals, as x runs through R, will be denoted R'.

Since, for any/££, Taf is continuous (Lemma 0), (x', Taf) is a

well-defined real number. Since (x', Taf) = (TJx', f), it follows that

TJx'EE' is a well-defined functional, no matter which extension of

the point-functional corresponding to x is meant by the symbol x'.

R+ is a net (or directed set; see [4, pp. 65 ff]) under the usual

ordering. Any unbounded subset of R+ is cofinal under the same order-

ing. B is a subnet of R+ if BER+ and B is a directed set in its own

right, under some other ordering, perhaps, but with the property that

given aER+, PEB, there exists yEB with 7>/3 in the ordering of B

and y>a in the ordering of R+. In particular, a subnet of R+ must

be unbounded. We shall also call a net any function from a net into a

topological space, and use the notation (e.g.) g = lp$fp (PEB) to

mean g is a topological point of accumulation of every terminal sec-

tion {f$\fi>fio} of the net {fp}. Ii g = lppfp, then g = lim7/7, where

j/7} is some subnet of {/a}. By way of converse, if g = lpyfy, and if

|/7} is a subnet of {/j}, then g = lp$fp.
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We shall denote by V that (closed) subspace of E consisting of all

/£E such that lim„ Taf exists in the norm topology of E, and shall

use the symbol /i to denote the constant function of E:fi(x) = 1 for

all xGR-

Lemma 1. If fG V, then there exists a number m(f)GR such that

lim„ Taf = m(f)fi.

Proof. Let \ima Tafix) = gix). For e>0, x^O, \g(x)—g(0)

= |lim„ (l/2a)f1a(f(x+t)-f(t))dt\ ^(l/2a)\fl++xf(t)dt-f?af(t)dt
+ e for all a>a0 suitably chosen. But if a> \x\,

/a+x /» a

f(t)dt-      f(t)dt\
-a+x J —a

/— a+x /* a+x

f(t)dl- j      f(t)dl   ^ 2 |*|-11/11.
-a ** a

Hence a>a0, \x\ =>\g(x) — g(0)\ <e+\x\\\f\\/a which can be made

arbitrarily small. Thus g, a constant function, is a multiple of/i.

We shall call m(f) the mean value of/, for/£ V. This is a linear

functional on the subspace V of E.

Definition 1. <p'GE' is called a mean-value functional if it is a

norm-preserving extension of the functional m(f) defined on V. Pre-

cisely:

(a) |k>'||=l,
(b)/£I^«>',/)=m(/).

We denote by M' the set of mean-value functional.

Lemma 2.

(a) ||rB|| =||r.|| =1 for all sGR, «£i?+,

(b) lim„   TaTJ-Taf\ =0,forallsGR,
(c) lim0   TaTpf- Taf\ = 0, for all (8£i?+.

Proof,  (a)  is obvious,  (b)  is proved exactly as in the proof of

Lemma 2, i.e., for a> \ s\ ,

(TaTsf - Taf)(x) = (l/2a) ( j" ' - j °) (/(/ + x)dt)

a—a+8 /» a+s\
- J       ) if it + x)dt)

which in absolute value is g (|.s| /a)||/|| for all x, and this can be

made arbitrarily small as a—>oo. As for (c): For each a£i?+, define

ga(x) = (l/2a) for -a^x^a, and g„(x)=0 otherwise. If convolution
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is defined by (F*G)(x)=f!*,F(t)G(x+t)dt, then it is clear that

(TaTs-Ta)f(x) = (ga*gg*f-ga*f)(x). For each a, gaELl, indeed

||ga||i = l. Denoting the norm in £ for the moment by ||/[|M, we have

the well-known inequality \\(ga *gB-ga) */||„^||g« *g0-g«||i-||/||».

But a calculation will show that lim„ |[g0 *gp — go[|i = 0.

III. The Set Af'.

Lemma 3. Af' is convex and compact in the weak- * topology of £'.

If<p'EM' and fEE, andf(x)^0 a.e., then (0',/)^O.

Proof. Convexity and closure of Af' follow immediately from

Definition 1, and hence compactness because Af' is a bounded set of

■£'• (0'. fi)=tn(fi) = l. Now let 0^/(x)gl a.e. Then fi-f has the
same essential bounds. (0',/) = 1 — (0',/i— /)• But ||0'|| =1, ||/i—/|| 2= 1

implies (0',/i—/)^1, i.e. (0',/)^O. For arbitrary positive fEE, the

result follows by the homogeneity of 0'.

Lemma 4. Let BER+ be a subnet, and {yi \BEB} C£' have the

properties \\y£ \\ = 1 and (yi, ft) = 1 for all BEB. If 0' = lpa{ Tiyi },
then cb'EM'.

Proof. (0',/i) = lp,(T[yi,fi) = lpB(yi,T„fi) = lps(yi ,fi) = 1-
Since for all BEB, \\T£y£\\ gl, we have ||0'|| ^1, hence ||0'[| =1, and

(a) of Definition 1 holds. Now let fEV. Then (0', f)=lp»(T0'ya', f)
= lp$(y£, Tgf). For any e>0, 3B0 such that ||F^/ — m(f)fi\\ <e for all

0>|8o. Thus | (yi , Taf-m(f)fi) \ = | (yi , Taf)-m(f) \ <e. For a suita-
ble B>Bo, | (0', f) — (y£, Tgf)\ <e, and combining the inequalities,

\(<t>',f)-m(f)\ <2e, and (b) of Definition 1 holds.

Lemma 5. Let fEE, and let BER+ be a subnet. Let {ui | BEB} EE',

and \\ui\\ ^l for all BEB. Ifh = lps(ui, /), there exists some <f>'EE'

such that 0' = lpgui (in the weak- * topology) and (0', /) =X.

Proof. Since \ = lps(ui, /) there is a subnet of B, call it C, such

that X = lim { (m7, f)\yEC}. Since ||m7 || 2=1, and the unit ball of £'

is compact in the weak- * topology, there exists 0' = lpy\uy }. But

then (0', /) = lpy(uy , f) = lim7 (m7' , /) =X.
Definition 2. L'EE' will denote the set of all functionals of the

form 0' = lpa { Tixi | aER+}, where for every a, xi ER', i.e. xi is a

point-functional.

We observe that if BER+ is a subnet, and <p' = lp{ T£xi\BEB},

then 0''EL'.

Lemma 6. Z'CAf'.
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Proof. Follows directly from Lemma 4, since point-functionals

x/ satisfy the requirements \\xg || = 1 and (x/ , /1) = 1.

Lemma 7. Let fGE, and let {x/ |/3£5} CR' be a directed set of

point functional^, B a subset of R+. If\ = lp$(T{ixp ,/), then there exists

some <p'GL' such that (<p', f) =X.

Proof. If we set «/ = Tlxl, we find the hypotheses of Lemma 5

are satisfied, and hence (<p', f) =X. That cb'GL' is evident from the

construction.

Theorem 1. Let fGE, and let

r(f) = lim inf   inf Taf(x),
a x

«(/) = lim sup sup Taf(x).
a X

Then there exists <p'GM' with (<p', f) =X if and only if r(f) ^X^w(/).
Further, for any such value X a corresponding <p'GL' may be found such

that (</>', /)=X.

Proof. If X=r(/), we can choose for each a>0 some point xaGR

such that \intx Taf(x) — Taf(xa)\ < I/a. Then clearly X

= lim infa infx ra/(x)=lim inf„ Tttf(xa). But Taf(xa) = (x„', Taf)

= (T„ x« ,/), where xj GR', and we have \ = lpaiTJ xa', /). By Lemma

7, there exists <p'GL' such that (</>', /) =X. Similarly, another </>'£L'

can be found such that (</>', f)=u(f). Now let r(/) <\<w(/). Then

there exists some a0 £ R+ such that for a > ao, infj, Taf(x) < X

<supx Taf(x). Since Taf(x) is a continuous function of x, there exists

for each a>a0 a point xa such that X = Taf(xa) = (xj, Taf) = (Tf, x'a, f).

Thus X = lima (T„ xd,/), and Lemma 7 applies again. It remains to

show that if X<r(/), there is no <p'GM' with (<p',f) =X, for a similar

argument will show X>w(/) is also not a possible value. Suppose

then X<r(/), but that (</>', f) =X, <p'GM'. Then there exists some

«o£-rv+and some 5>0 such that X ̂  Taf(x) — 5 for all xGR, all a>ao-

Then T„/(x) - 5/,(x) - X/,(x) ^0 (x £ R, a > a0). By Lemma 3

(<b', Taf-fi-\fi)^Q. But (<£', Taf) = (<p',f) for any<£'£M', and we

have (</>', /) —5(<j>', fi) — X(</>', /1) = — 6^0 which is a contradiction.

Theorem 2. M' is the closed convex hull of L'.

Proof. Since M' is convex and compact, it is sufficient (by the

Krein-Milman theorem) to show L' contains all the extreme point of

M'. Equivalently [3, Theorem l] it suffices to show, for every fGE,

that sup {(<p', f)\<p'GM'\=sup {(<b', f)\<p'GL'}. But Theorem 1
showed both these numbers to be «(/).
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The expressions for r(/) and u(f) in Theorem 1 can be sharpened

in appearance, as well as expressed in other forms, via the following

theorem. We shall denote by V0 that subspace of V composed of all

fE V such that m(f) =0, and observe that, by Lemma 2(c), for every

fEE, aER+, Taf —fEVo. Also, any function in £ vanishing outside

a compact subset of R is in Vo-

Theorem 3. Let

A = lim sup sup Taf(x),
ft X

B = lim inf lim sup Taf(x),
« UI-*"°

C= inf Blip (/"(as) -g(x)),
Qc^\ o X

D = inf  lim sup (/(x) — g(x)),

G = inf (m(g) + \\f - g\\)

for any fEE. Then A=B = C = D=G=u(f). In particular, lim supa

and lim inf„ in the expressions for A and B may both be replaced by

lim„.

Proof. Clearly A ^B and C^D. To show A^C, set ga=f-Taf

for each a£f?+. Then gaE Vo, and sup* Taf(x) =supx (f(x) —ga(x)) 3: C

ior all ex. To show B^D, the procedure is the same. Then A =B

= C = D follows if we show A^D. Let e>0, and let gE Vo be chosen

such that

lim sup (f(x) — g(x)) < D + t.
|z|-»«>

Then it is possible to find some h(x)EE which vanishes outside a

finite interval (hence hE Vo) such that supx (f(x) — g(x) — h(x))

<D+e. Then for all aER+, supx [TJ(x)-Tag(x)-Tah(x)]<D + e.

But lima (Tag(x) + Tah(x)) =0 uniformly in x, hence there exists

a0ER+ such that for all a>a0, supx Taf(x) <D + 2t, and hence

A^D + 2e. Finally we show ^4=G. First we assume f(x) ^ 0. Now

A=a>(f) = (<p',f) ior some <p'EM'. For any gE V, (cb', f -g) g||/-g\\,

orA= (0', /) g (0', g) +\\f-g\\, i.e. A £m(g) +\\f-g\\ for all gE V, or
A^G. Now if ^4<G, there exists a0 such that for all gE V,

sup* Taf(x)<m(g)+\\f-g\\. But if g=f-TaJ, m(g)=0, and we ob-
tain supx TaJ(x) < ||Faj||, whereas since f(x) ^ 0, supx TaJ(x)

= \\Taj\\. Thus A =G if/(x)^0. For an arbitrary fEE, (/+||/||/,)(x)

^0. An easy calculation shows that
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lim sup sup Ta(f(x) + ||/||/i(x)) = ||/|| + lim sup sup Taf(x),
ax ax

inf (m(g) + ||/+ H/ll/i - «||) = ll/H + inf (m(g) + \\f - g\\)

from which the conclusion follows. In the second calculation it is

necessary to observe that g — ||/||/i runs through all of V as g does.

In exactly similar style, the following theorem gives equivalent

expressions for r(f). The proof will be omitted.

Theorem 4. Let

A = lim inf inf Taf(x),
a x

B = lim sup lim inf Taf(x),
|x|-»

C = sup  inf (f(x) - g(x)),
ffeVo     x

D = sup lim inf (f(x) — g(x)),
seV,    |z|-»oo

G = sup(m(g) - j|/- g||)
HE?

for any fGE. Then A =B = C = D = G=r(f). In particular lim  infa

and lim supa in the expression for A and B may be replaced by lim„.

IV. Uniformly continuous functions

Definition 3. An element <p'GE' will be called a Banach Limit

when

(a) ||0'||=1,

(b) (4>',fi) = l,
(c) (<?', Tsf)=(<p',f), for all/££, sGR.

The set of Banach Limits will be denoted B'.

Theorem 5. M'CB'; i.e. every mean value functional is a Banach

Limit.

Proof, (a) and (b) are immediate from (a) and (b) of Definition 1.

To show (<f)', Tsf—f)=0, we observe that lim„ || Ta(Tsf— f)\\ =0

(Lemma 2(b)), i.e. Tsf—fGV and m(Tsf—f)=0, and apply Defini-
tion 1(b).

Theorem 6. // E is the space of bounded uniformly continuous real

functions on R, then M'=B'.

Proof. If /is uniformly continuous Taf(x) is uniformly approxi-

mated by its Riemann sums, which is to say \\Taf— zZaiTsj\\ <e for
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arbitrary e and suitable choice of the convex combination ^_,aiTgJ.

Now let cb'EB', and let fEV; we must show (0', f)=m(f). But

(0',/) = (0', ?V) by (c) of Definition 3, hence (0',/) = (0', E^r,,./)
for any convex combination of these. Thus for any «G£+, (0', /)

= (0', 7V), and (0', /)=lima (0', Taf) = (<b', IimB 7"J) = (0\ «(/)/,)
= m(f) by (b) of Definition 3.
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