MEAN VALUES AND BANACH LIMITS!
RALPH A. RAIMI

I. Introduction. For certain bounded real valued functions on the
real line, lim, (1/2 a)f*.f(x+¢)dt exists uniformly in x, and is a
constant, m(f). On the space of such functions, the limit m(f) is a
translation-invariant positive functional of norm one, and hence gen-
eralizes the notion lim,;., f(x). For bounded sequences, such a func-
tional is often called a Banach limit ([1, pp. 83-84], and [5]).2 Norm
preserving extensions of m(f) to wider spaces will still be called
Banach limits. In sections II and III the properties of these exten-
sions will be explored, in particular their extreme values, and in sec-
tion IV a space will be exhibited for which all Banach limits are ob-
tained in this way.

The author wishes to express his appreciation of the assistance of
Professor S. Kakutani, to whom Theorem 3 is due, as well as nu-
merous suggestions and conjectures.

I1. Preliminaries. Let E be a complete normed linear space of real-
valued essentially bounded measurable functions on R, the real line,
with ”f”=ess. sup. {|f(x)| {xER}, denoted hereafter merely by
sup, |f(x)| . That E is actually made up of equivalence classes of such
functions will be ignored in the sequel wherever no confusion thus
arises. We shall assume further that E contains all bounded uni-
formly continuous functions, and all translates of functions in E,
i.e. if f(x) EE, then f(x+s)EE, for any s&R.

Let E’ be the conjugate space of E, and L(E, E) the ring of con-
tinuous linear operators on E to E. For each s&R we define an ele-
ment T.&EL(E, E) by T,: f(x)—f(x+s). Denoting by R+ the set of
all positive real numbers, we define for each & R* the operation

To: f(x)—(1/20) [2 o f(x+ ).

LEMMA 0. For any fEE, a &R+, T f is a uniformly continuous func-
tion on the real line. In particular To&EL(E, E) for all « &R+,

PROOF. Let >0 be given, and choose sE€ R such that | s| <e, and
Is[ <(ae/”f”). Then
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| Taf(x) — Tof(x+s) [ = (1/2)a f flx 4 Ddt — f fla+1+ s)dt’

— (1/2a) f fa+oa— [ f(x+t)dt‘

—a+s

—ats
= (1/2a) f flx 4+ ndt —f flx + l)dtl
= @Al s|/20) < ¢,

independently of x.

If we set T={ T.|«€ R+}, and denote the set of translation oper-
ators { T,|sER} by U, we observe that the elements of U com-
mute with each other.

Let E’ denote the conjugate space of E. If TEL(E, E), T’ will
denote the adjoint operator. 7" is continuous on E’ to E’ when E’ is
given its weak- = topology. This is the only topology on E’ which will
be considered. If ¢’ E’, fEE, (¢', f) will denote the value of the
functional ¢’ at the point f.

If x€R, and fis a continuous function, we denote by x’ the “point-
functional” x’: f—f(x). If fEE is an equivalence class of functions
containing a continuous representative, we shall define («, f) =f(x)
for that representative. Now x’ becomes a functional defined un-
ambiguously on a closed subspace of E, and may be extended, with
preservation of the norm ||x’|| =1, to any of a number of elements of
E’. In what follows, the symbol x” will represent any such element
of E’, arising from the number x& R, and the set of all such func-
tionals, as x runs through R, will be denoted R’.

Since, for any fEE, T.f is continuous (Lemma 0), (x’, T.f) is a
well-defined real number. Since (x/, T.f) =(TJ«’, f), it follows that

'x' & E' is a well-defined functional, no matter which extension of
the point-functional corresponding to x is meant by the symbol «’.

R+ is a net (or directed set; see [4, pp. 65 ff]) under the usual
ordering. Any unbounded subset of R+ is cofinal under the same order-
ing. B is a subnet of R* if BCR* and B is a directed set in its own
right, under some other ordering, perhaps, but with the property that
given a E R+, BE B, there exists Y& B with ¥ > in the ordering of B
and y>a in the ordering of R*. In particular, a subnet of R+ must
be unbounded. We shall also call a net any function from a net into a
topological space, and use the notation (e.g.) g=Ilpsfs (BEB) to
mean g is a topological point of accumulation of every terminal sec-
tion {fp|B>Bo} of the net {fg}. If g=Ipsfs, then g=lim, f,, where
{f,} is some subnet of {fs}. By way of converse, if g=Ip,f,, and if
{f,1 is a subnet of {fs}, then g=1Ipsfs.
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We shall denote by V that (closed) subspace of E consisting of all
fEF such that lim, T,f exists in the norm topology of E, and shall
use the symbol f; to denote the constant function of E: fi(x) =1 for
all x&R.

LEMMA 1. If fEV, then there exists a number m(f) ER such that
limg Tof =m(f)f.

ProoF. Let lim, T.f(x)=g(x). For >0, x>0, |g(x)—g(0)
=[lima (1/20) [2o( fGx+1) —=f0)dt] = (1/20)| [2E52f(O)dt— [ 2af (D)t
+e¢ for all > ay suitably chosen. But if a> | x|,

f(t)dl f_ ] f(t)dt’

-| f_:‘“fa),u -f “*‘mdl‘ < 2] x|

Hence a> ay, |x|=>|g(x)—g(0)| <e+|x|||f||/a which can be made
arbitrarily small. Thus g, a constant function, is a multiple of fi.

We shall call m(f) the mean value of f, for f&€ V. This is a linear
functional on the subspace V of E.

DEFINITION 1. ¢’ €E' is called a mean-value functional if it is a
norm-preserving extension of the functional m(f) defined on V. Pre-
cisely:

(@) (¢l =1,

(b) feV=(¢', /) =m(f).

We denote by M’ the set of mean-value functionals.

LEMMA 2.

@) [|Td| =Tl =1 for all sER, aER*,
(b) limg ||T.T:f—Taf]|| =0, for all sER,
(¢) limg ||TuTsf —Taf|| =0, for all BER*.

Proor. (a) is obvious. (b) is proved exactly as in the proof of
Lemma 2, i.e., for a> lsl ,

(TuTof — Tof) (@) = (1/2(1)( f_ : - f_ ) (f + )di)

- f _+ -f m) (J + %))

which in absolute value is <(|s|/a)||f|| for all x, and this can be
made arbitrarily small as a— ©. As for (c): For each a € R+, define
ga(x) =(1/2a) for —a<x=Za, and g.(x) =0 otherwise. If convolution
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is defined by (F+G)(x)=/".F()G(x+t)dt, then it is clear that
(ToaTs—T)f(x)=(ga*gs*f—ga+f)(x). For each a, g.€L!, indeed
|lgall:=1. Denoting the norm in E for the moment by [|f]|.., we have
the well-known inequality H (ga * 25— ga) *fllwé Hga * gg—ga“nyHw.
But a calculation will show that lim, ||g. * gs— g1 =0.

I11. The Set M.

LEeMMA 3. M’ is convex and compact in the weak-+ topology of E’.
If '€ M’ and fEE, and f(x) 20 a.e., then (¢', f) 0.

Proor. Convexity and closure of M’ follow immediately from
Definition 1, and hence compactness because M’ is a bounded set of
E'. (¢, fiy=m(fi)=1. Now let 0=f(x)=<1 a.e. Then fi—f has the
same essential bounds. (¢/, f) =1—(¢', fi—f). But ||¢’|| =1, [|[fi—f]| =1
implies (¢, fi—f) =1, i.e. (¢’, f) 20. For arbitrary positive fEE, the
result follows by the homogeneity of ¢’.

LEMMA 4. Let BCR* be a subnet, and {yd |BEB} CE' have the
properties ||yd|| =1 and (y4, f) =1 for all BEB. If ¢' =Ips{ T4 v{ },
then ¢’ EM’'.

Proor. (¢'.f1) = lps(Tsys,f1) = lps(ys , Tsh) = lps(y4,.f1) = 1-
Since for all BEB, ||T¥ yd || <1, we have ||¢'|| <1, hence [|¢’|| =1, and
(a) of Definition 1 holds. Now let f& V. Then (¢', f) =1ps(T4 ys, f)
=Ips(yd, Tsf). For any €>0, 3B, such that || Tsf —m(f)fi]| <e for all
B>Bo. Thus | (vd, Tsaf —m(Hf)| =|(vé, Tsf) —m(f)| <e. For a suita-
ble 8>, |(¢>', H—04d, Tﬁf)l <e¢, and combining the inequalities,
| (¢', f) =m(f)| <2¢, and (b) of Definition 1 holds.

LEMMA 5. Let fEE, and let BC R+ be a subnet. Let {ud |SEB} CE’,
and Hug’H <! for all BEB. If N=Ips(ud, f), there exists some ¢' S E’
such that ¢’ =1psgus (in the weak- + topology) and (¢’, f) =\.

Proor. Since N =Ipg(ud, f) there is a subnet of B, call it C, such
that A=lim {(x,, /)| vEC}. Since ||u/|| <1, and the unit ball of E’
is compact in the weak- topology, there exists ¢’ =1p,{u, }. But
then (¢', f) =1p,(uy , f) =lim, (uy, f) =\.

DEerFINITION 2. L'C E’ will denote the set of all functionals of the
form ¢’ =Ip.{ T x. |« ER*}, where for every a, xJ ER’, i.e. xd isa
point-functional.

We observe that if BCR* is a subnet, and ¢’ =Ip{ T{ x{ |BEB},
then ¢' &L’.

LeEMMA 6. L'C M.
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Proor. Follows directly from Lemma 4, since point-functionals
x4 satisfy the requirements ”xﬂ’ ” =1 and (x4, fi) =1.

LEMMA 7. Let fEE, and let {x{ |BEB} CR’ be a directed set of
point functionals, B a subset of Rt. If N=1ps(T4 x4 , f), then there exists
some ¢' L’ such that (¢, f) =\.

Proor. If we set ug =T x4, we find the hypotheses of Lemma 5
are satisfied, and hence (¢’, f) =\. That ¢’EL’ is evident from the
construction.

THEOREM 1. Let fEE, and let
7(f) = liminf inf T.f(x),

w(f) = lim sup sup T.f(x).

Then there exists ' S M’ with (¢', f) =\ if and only if 7(f) SA=Sw(f).
Further, for any such value \ a corresponding ¢’ €L’ may be found such

that (¢', f) =\.

Proor. If A=7(f), we can choose for each a>0 some point x,&ER
such that |inf, Tuf(x) — Tuf(xa)] < 1/a. Then clearly A
=lim inf, inf, T.f(x)=lim inf, Tof(xa). But Tauf(xs) = (xs, Taf)
=(T4xa,f), wherexy ER’, and we have A=1p, (T, xd , f). By Lemma
7, there exists ¢’ €L’ such that (¢’, f) =\. Similarly, another ¢’ EL’
can be found such that (¢’, f) =w(f). Now let 7(f) <A <w(f). Then
there exists some ay € R* such that for a@ > a, inf, T.f(x) < A\
<sup. Taf(x). Since T.f(x) is a continuous function of x, there exists
for each a>ag a point x, such that A = T, f(xa) = (o , Tof) = (T4 ., f).
Thus A=lim, (T« x4, f), and Lemma 7 applies again. It remains to
show that if X <7(f), there is no ¢’ € M’ with (¢’, f) =N, for a similar
argument will show A>w(f) is also not a possible value. Suppose
then A<7(f), but that (¢’, f) =\, ¢’ EM’. Then there exists some
ay& Rt and some 6 >0 such that A\S T, f(x) — 6 for all x ER, all &> a,.
Then T,f(x) — 8fi(x) — Mi(x) 2 0 (x E R, @ > ay). By Lemma 3
(@, Tof =fi—N1) 20. But (¢, T.f) =(¢, f) for any ¢’ EM’, and we
have (¢, f) —8(¢’, fi) —=\(¢’, fi) = —8=0 which is a contradiction.

THEOREM 2. M’ is the closed convex hull of L'.

ProoF. Since M’ is convex and compact, it is sufficient (by the
Krein-Milman theorem) to show L’ contains all the extreme point of
M'. Equivalently [3, Theorem 1] it suffices to show, for every fEE,
that sup {(q&', f)|¢’EM’} =sup {(¢’, f)|¢'EL'}. But Theorem 1
showed both these numbers to be w(f).
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The expressions for 7(f) and w(f) in Theorem 1 can be sharpened
in appearance, as well as expressed in other forms, via the following
theorem. We shall denote by ¥V, that subspace of ¥ composed of all
fE V such that m(f) =0, and observe that, by lLemma 2(c), for every
fEE, aERY, To.f —f& V,. Also, any function in E vanishing outside
a compact subset of R isin V.

THEOREM 3. Let

A = limsup sup T.f(x),

B = lim inf limsup T.f(x),

|z] =

C = inf sup (f(») — g(&)),

geVo =z
D = inf limsup (f(x) — g(x)),
gecVo |z|o=

G = inf (m(p) + 1f— el

for any fEE. Then A=B=C=D=G=w(f). In particular, lim sup,
and lim inf, in the expressions for A and B may both be replaced by
lim,.

Proor. Clearly A =B and C=D. To show 4 =C, set ga=f—Taof
for each aER*. Then g. & V,y, and sup, Tof(x) =sup, (f(x) —ga(x))=C
for all . To show Bz=D, the procedure is the same. Then 4 =B
= C=D follows if we show 4 =D. l.et ¢>0, and let g& V, be chosen
such that

lim sup (f(x) — g(x)) < D + e
|z]— e

Then it is possible to find some k(x) ©E which vanishes outside a
finite interval (hence A& V,) such that sup, (f(x) —g(x) —k(x))
<D+e. Then for all aER*, sup, [Taf(x) — Tag(x) — Toh(x) | <D +e.
But lim, (T.g(x)+Toh(x)) =0 uniformly in x, hence there exists
o9& R* such that for all a>ay, sup. T.f(x) <D+2¢ and hence
A £D+2e. Finally we show 4 =G. First we assume f(x) 20. Now
A=w(f)=(¢', f) for some ¢'EM'. For any g€V, (¢', f—g) =||f—¢l,
or A=(@, )= (@, D+l ~el, i.e. A=m(@)+[|[f—g| for all g€V, or
AZG. Now if A<G, there exists ay such that for all g&7,
sup; Taf(x) <m(g) +||f—gll. But if g=f—Taf, m(g) =0, and we ob-
tain sup, Tef(x) < ||Ta0f||, whereas since f(x) = 0, sup, Te,f(x)
=||Twfl]. Thus 4 =G if f(x) 20. For an arbitrary fEE, (f+]|fl/f1) (x)
=0. An easy calculation shows that
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lim sup sup T.(f(») + Hf”fl(x)) = ]|f“ + lim sup sup T.f(x),

inf (m(¢) + [If + [Ifl72 = &) = Al + inf GmCe) + 7 — gl

from which the conclusion follows. In the second calculation it is
necessary to observe that g—” f” f1 runs through all of V as g does.

In exactly similar style, the following theorem gives equivalent
expressions for 7(f). The proof will be omitted.

THEOREM 4. Let
A = lim inf inf T, f(x),

B = limsup lim inf T.f(x),

lz|—»

C =sup inf (f(x) — g(x)),

9cVo =z

D = sup lim inf (f(x) — g(x)),

geVo Jz|ow

G= sup (m(g) — || — &l

for any fEE. Then A=B=C=D=G=7(f). In particular lim inf,
and lim sup, in the expression for A and B may be replaced by lim,.

IV. Uniformly continuous functions
DEFINITION 3. An element ¢’ EE’ will be called a Banach Limit
when
(@) (¢ =1,
(b) (¢, fi)=1,
(©) (@', Tsf)=(¢', f), for all fEE, sER.
The set of Banach Limits will be denoted B’.

THEOREM S. M'CB’; i.e. every mean value functional is a Banach
Limat.

PRrooF. (a) and (b) are immediate from (a) and (b) of Definition 1.
To show (¢', T.f—f)=0, we observe that lim, ||T(T.f—f)||=0

(Lemma 2(b)), i.e. Tof—fEV and m(Tf—f) =0, and apply Defini-
tion 1(b).

THEOREM 6. If E is the space of bounded uniformly continuous real
functions on R, then M'=B’,

Proor. If f is uniformly continuous 7,f(x) is uniformly approxi-
mated by its Riemann sums, which is to say || Tuf— 2_a:T,.f|]| <e for
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arbitrary e and suitable choice of the convex combination Y a;T,.f.
Now let ¢’EB’, and let fEV; we must show (¢’, f) =m(f). But
(@', )= (@', T.f) by (c) of Definition 3, hence (¢', f) = (@', D_a:Ts.f)
for any convex combination of these. Thus for any a&ER*, (¢, f)
=(¢', T.f), and (¢', f) =lima (@', Taf) =(¢', lima Tuf) = (8", m(f)fr)
=m(f) by (b) of Definition 3.
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