D-REGULARITY

NATHAN DIVINSKY

We shall call an element \(x \) of a ring \(A \), right \(D \)-regular if there exists an element \(y \) in \(A \) such that \(x = xy \). This property of \(x \) belonging to \(xA \) has been studied before [2; 6].\(^1\) With techniques available from [5] it is not difficult to show the existence of a maximal right \(D \)-regular two-sided ideal \(M_R \) and a left analogue \(M_L \). These are in general not equal. They are connected with the Jacobson radical \(J \) and the subradicals \(P_R \) and \(P_L \), [6], in the following way:

\[
P_R = J \cap M_R; \quad P_L = J \cap M_L.
\]

The present note goes on to consider the cases \(M_R = 0 \) and \(M_R = A \), for various degrees of chain assumptions. In the commutative case \(M_R = M_L = M \), the maximal \(D \)-regular ideal.

1. **Preliminaries.** Following Brown and McCoy [5], to each element \(a \) of a ring \(A \) we associate the right ideal \(F(a) = aA \). The element \(a \) is said to be right \(D \)-regular (r.D.r.) if \(a \) belongs to \(F(a) \). A right ideal is said to be r.D.r. if every element in it is r.D.r. It is easy to see that \(F(a + b) \subseteq F(a) + (b) \subseteq F(a) + (b) \), and that \(F(a + b) \subseteq F(a) \) if \(b \) is in \(F(a) \). Then by Theorems 1 and 2 of [5] we can conclude that \(M_R = \{ x: (x) \) is r.D.r. \}, is a two-sided ideal which contains every r.D.r. two-sided ideal; and that \(M_R(A - M_R) = 0 \). In other words, \(A \) is an \((F, \Omega, \Omega')\) group and by Theorem 6 of [5] we have:

\[
M_R = \bigcap_i M_i',
\]

where \(M_i \) is a large modular right ideal, i.e. there exists an element \(x_i \) not in \(M_i \) such that \(x_iA \leq M_i \) and such that every right ideal which properly contains \(M_i \), also contains \(x_i \). The set \(M_i' \) is the largest two-sided ideal contained in \(M_i \).

Though this development is both elegant and general it does not seem to yield the fact that \(M_R \) contains all the r.D.r. right ideals. In particular, if \(x \) is in \(xA \) and if for every \(y \) of \(A \), \(xy \) is in \(xyA \), it is not clear that \(x \) must be in \(M_R \). To obtain this fact one must return to the original Jacobson techniques and develop \(M_R \) from a one sided point of view. Using a technique of [6] we obtain:

\(^1\) Numbers in square brackets refer to the bibliography at the end of the paper.

Presented to the Society, August 23, 1956; received by the editors November 25, 1955 and, in revised form, May 13, 1957.
Lemma 1. If x is r.D.r. and if a belongs to an r.D.r. right ideal, namely aA, then $a + x$ is r.D.r.

Proof. We have $xx' = x$, $aa' = a$. Define $u = a - ax' = aa' - ax' = a(a' - x')$. Then u belongs to aA and therefore there exists an element u' such that $uu' = u$. Define $v = u' + x' - x'u'$. Then $xv = xu' + xx'u' = xu' + x - xx'u' = x$; and $av = au' + ax' - ax'u' = (a - ax')u' + ax' = a - ax' + ax' = a$. Therefore $(a + x)v = a + x$. Q.E.D.

Corollary. The sum or two r.D.r. right ideals is an r.D.r. right ideal.

We define M_R^* to be the union of all the r.D.r. right ideals. Then M_R^* is itself an r.D.r. right ideal. We now show that it is a two-sided ideal:

Lemma 2. M_R^* is a two-sided ideal of A.

Proof. For a in A and x in M_R^*, xa is in M_R^*. Since $xx' = x$ and for every y of A, there is an element y' such that $xy = xyy'$; $ax' = ax$ and $axyy' = axy$. Therefore ax is in M_R^*. Q.E.D.

It is now easy to see that $M_R^* = M_R$ and we have

Theorem 1. If x is in xA and for every y of A, xy is in xyA, then x is in M_R.

The proof of the next theorem is immediate from results in [6].

Theorem 2. If J is the Jacobson radical of A, then $P_R = J \cap M_R = J(M_R)$; and $P_L = J \cap M_L = J(M_L)$.

Thus in the commutative case, the subradical is the radical of the max.D.r. ideal.

We shall now obtain some simple properties of M_R. First we observe that M_R and M_L may not be equal. The following example is due to Hopkins [8]. Let A be the set of all $me + nu$, where $e^2 = e$, $u^2 = 0$, $eu = u$, $ue = 0$, and where m, n are in a field F. Then $M_L = A$ whereas $M_R = 0$. The proof of the following lemma is immediate.

Lemma 3. If B is an ideal of A, then $M_R(B) < B \cap M_R$.

The point is that they may not be equal. Let $B = J$, and let A have a right unity element. Then $M_R(B) = 0$, whereas $B \cap M_R = J \cap A = J$.

We observe also that $M_R = M_RA^n$ for every n; $M_L = A^mM_L$, for every m.

Lemma 4. $M_R(M_R) \subseteq M_R^n$ for every n; $M_R(M_R) = M_R(M_R^n)$ for every n.

Proof. If x is in $M_R(M_R)$, then in particular $x = xy$, with y in M_R.

Then \(x = xy^{n-1} \), which is in \(M^n_R \). The second half is also immediate,
\(x = xy^n \), with \(y^n \) in \(M^n_R \).

Thus we have \(M_R > M^2_R > \cdots > M^n_R > \cdots > M_R(M_R) = M_R(M^n_R) = \cdots \).

This chain can in fact descend.

Example 1. Let \(A \) be the set of all finite sums \(\sum_i \alpha_i x^i + \sum_j \beta_j y^j \), where \(\alpha_i \) and \(\beta_j \) are in a field \(F \) and where \(x \) and \(y \) are indeterminates such that \(x' y = y' x = x \) for every \(i \) and \(j \). Then \(M = (x) \), \(M^2 = (x^2) \), \(\cdots \), \(M^n = (x^n) \), \(M(M) = \cdots = M(M^n) = \cdots = 0 \).

By methods almost the same as in [4], one can prove

Theorem 3. If \(A_n \) is the complete matric ring of order \(n \) over \(A \) then \(M_R(A_n) = (M_R(A))_n \); \(M_L(A_n) = (M_L(A))_n \).

This leads to

Lemma 5. If \(a_1, \cdots, a_n \) is any finite set of elements in \(M_R \), \(a_i = a_i a_i^t \), then there exists an element \(b \) in \(A \) but not necessarily in \(M_R \) such that \(a_i = a_i b \) for all the \(a_i \).

Proof. Since the \(a_i \) are in \(M_R \), the \(n \times n \) matrix \(c \), with the \(a_i \) in the first column and zeros elsewhere, is in \(M_R(A_n) \), by Theorem 3. Then, in particular, there exists a matrix \(d = (b_{ij}) \) such that \(cd = c \). However

\[
cd = \begin{pmatrix}
a_1 b_{11} & \cdots \\
a_2 b_{11} & \cdots \\
\vdots \\
a_n b_{11} & \cdots
\end{pmatrix}
\]

and therefore \(b = b_{11} \).

An inductive proof can also be given. For \(n = 2 \), Lemma 5 is a consequence of the proof of Lemma 1. We assume the result for any set of \(n-1 \) elements of \(M_R \). Given \(a_1, \cdots, a_n \), with \(a_i = a_i a_i^t \), consider the set of \(n-1 \) elements \(a_i - a_i a_n^t \), for \(i = 1, \cdots, n-1 \). By induction there exists an element \(g \) such that \((a_i - a_i a_n^t) g = a_i - a_i a_n^t \). Define \(b = a_n^t + g - a_n^t g \). Then \(a_n b = a_n + a_n g - a_n g = a_n \); whereas \(a_i b = a_i a_i^t + (a_i - a_i a_n^t) g = a_i a_i^t + a_i - a_i a_n^t = a_i \), for \(i = 1, \cdots, n-1 \). Q.E.D.

Corollary. If \(M_R \) is finitely generated as a left \(A \)-module, then there exists an element \(e \) in \(A \) such that \(M_R = M_R e \) pointwise. The element \(e \) is not necessarily in \(M_R \), or an idempotent or unique.

It is clear that if \(A \) has a right unity element then \(A = M_R \). If
$A = J$, then both M_R and M_L are zero, since x in xJ or Jx implies $x = 0$, [3]. Thus we might expect that if $M_R = A$ then A is well behaved whereas if $M_R = M_L = 0$ then A is radical-like. This is certainly so when A is commutative with DCC. In that case A can be expressed as $A = eA + N_0$ where e is an idempotent, $eN_0 = 0$ and N_0 is nilpotent. Since a central idempotent is always in both M_R and M_L, here e is in M and thus $eA \leq M$. On the other hand if x is in M, $x = ex_1 + n_1$, then in particular there exists an element $ey + n_2$ such that $(ex_1 + n_1) \cdot (ey + n_2) = ex_1 + n_1$ and thus $n_1n_2 = n_1, n_1 = 0$. Therefore $M \leq eA, M = eA$. Also N_0 is simply M', the set of annihilators of M. We have

Theorem 4. If A is a commutative ring with DCC then $A = M + M'$, where M, the max.D.r. ideal, has a unity element and M' is nilpotent.

This corresponds to the result in [4] which states that every ring A with DCC (though not necessarily commutative) can be expressed as $M + M'$ where M, the max. regular ideal, is semi-simple, and where M' is bound to its radical. Here $M > \bar{M}$ and $M' < \bar{M}$. Thus we know more about M', namely that it is nilpotent, and less about M, since it is not necessarily semi-simple.

Corollary 1. If A is commutative with DCC then $M = A$ if and only if A has a unity element; $M = 0$ if and only if A is nilpotent.

Using the fact that $M(A - M) = 0$ we then have

Corollary 2. If A is commutative with DCC for $A - M$ or in particular for A, then $A - M$ is nilpotent.

Theorem 4 and its corollaries remain true if the condition of commutativity is relaxed to the restriction that all idempotents lie in the center. Without DCC however, Theorem 4 is false, for in Ex. 1, M is the set of all $\sum_{i}^{n} x_i$, whereas M' is the set of all $\sum_{j}^{m} y_j$ with $\sum_{i}^{n} \beta_i = 0$. Thus M and M' do not fill out all of A.

2. **The cases M_R, M_L, M_R and M_L equal to zero.**

Theorem 5. If A is a ring with DCC on right ideals, then A is nilpotent if and only if $M_R = 0$ and there are no nonzero absolute left zero divisors (i.e. elements x such that $xA = 0$) in A^n for every n.

Proof. In one direction the proof is clear. Assume then that $M_R = 0$ and that there are no nonzero absolute zero divisors in A^n. By DCC we can write $A = e_1A + \cdots + e_nA + N_0$ where the e_iA are indecom-
posable right ideals and N_0 is nilpotent. If $e_1 \neq 0$ then it is not in M_R. Then there must exist an x' in A such that $e_1 x' \neq 0$ and such that $e_1 x'$ is not in $e_1 x'A$. Else e_1 is in M_R by Theorem 1. Thus $e_1 x'A \neq e_1 A$. Since $e_1 A$ is indecomposable, $e_1 x'A$ must be nilpotent. Since $e_1 x' = e_1^{n-1} x'$ is in A^n for every n, $e_1 x'A$ cannot be zero. Let N be the max. nilpotent ideal of A. Then $e_1 N > e_1 e_1 x'A = e_1 x'A \neq 0$. However the chain $e_1 N > e_1 N^2 > \cdots > e_1 N^n > \cdots$ terminates in zero after a finite number of steps. Then there exists an integer $w \geq 1$ such that $e_1 N^w \neq 0$, $e_1 N^{w+1} = 0$. Let x'' be an element of N^w such that $e_1 x'' \neq 0$ and let $x = e_1 x''$. Then $xN = 0$, $x \neq 0$. Since $xN < xN = 0$, there must exist an e_i such that $xe_i A \neq 0$. However since $xN = 0$, $xe_i A$ is a minimal right ideal of A. For if $0 \neq I \subseteq xe_i A$, where I is a right ideal of A, let $Q = \{y \in e_i A : xy \text{ is in } I\}$. Then Q is a right ideal of A, $Q \subseteq e_i A$. If $Q \neq e_i A$, then Q is nilpotent because $e_i A$ is indecomposable. Then $xQ < xN = 0$ and therefore if z is in I, $z = xe_i z'$ for some z' in A, $e_i z'$ is in Q, $xe_i z' = 0$, $I = 0$. Thus $Q = e_i A$, $I = xe_i A$.

Finally let y' be an element of A such that $xe_i y' \neq 0$, and let $y = e_i y'$. Then xy is in $xe_i A$, $xyN = 0$, $xyA \neq 0$ (since $xy = e_i^{n-2} xy$ is in A^n for every n). Now $xyA \subseteq xe_i A$ and since $xe_i A$ is minimal, $xyA = xe_i A$. Therefore xy is in xyA. Furthermore if $xyu \neq 0$, $xyuA \neq 0$ (again since $xyu = e_i^{n-2} xyu$ is in A^n for every n) and thus xyu is in $xyuA$. Therefore xy is in M_R by Theorem 1. This is a contradiction and thus all the e_i are zero, and A must be nilpotent. Q.E.D.

Corollary 1. If A has DCC on left ideals then A is nilpotent if and only if $M_L = 0$ and there are no nonzero absolute right zerodivisors in A^n for every n.

Since M_R contains the max. regular ideal M and when $A - J$ is regular, or in particular when A has DCC on right ideals, then $M = 0$ if and only if A is bound to J, Theorem 6, [4], we can conclude that when $M_R = 0$ and A has DCC on right ideals, A is bound to J. Combining this with Theorem 5 we have

Corollary 2. If A has DCC on right ideals and $M_R = 0$, then either A is nilpotent or A is bound to N and A has an absolute left zero divisor in A^n for every n.

The converse is also true. Using the fact that $M_R (A - M_R) = 0$ we have

Corollary 3. If A has DCC on right ideals, then $A - M_R$ is nilpotent if and only if $xA \leq M_R$ and x in $(A - M_R)^n$ for every n, implies that x is in M_R.

When \(M_R = M_L = 0 \) the zero divisor condition can be slightly weakened.

Theorem 6. If \(A \) has DCC on one-sided ideals, then \(A \) is nilpotent if and only if \(M_R = M_L = 0 \) and there are no nonzero total divisors of zero in \(A^n \) for every \(n \), i.e. elements \(x \) such that \(xA = Ax = 0 \) and \(x \) in \(A^n \) for every \(n \).

Proof. In one direction the proof is clear. Conversely, we write as before \(A = e_1A + \cdots + e_nA + N_0 \) where the \(e_iA \) are indecomposable right ideals and \(N_0 \) is nilpotent. If \(e_i \neq 0 \), consider the chain \(e_1N > e_1N^2 > \cdots > e_1N^\gamma = 0 \). There exists an integer \(\gamma \) such that \(e_1N^\gamma \neq 0 \), \(e_1N^\gamma+1 = 0 \). If \(\gamma = 0 \), let \(x \) be any element such that \(e_1x \neq 0 \). Consider \(e_1xA \leq e_1A \). If \(e_1xA \neq e_1A \), then since \(e_1A \) is indecomposable, \(e_1xA \) is nilpotent, \(e_1xA \) is in \(N \). Then \(e_1 \cdot e_1x = e_1N = 0 \). Then \(e_1x \) is properly nilpotent, \(e_1x \) is in \(N \). Then \(e_1 \cdot e_1x = 0 = e_1x \), a contradiction. On the other hand if \(e_1xA = e_1A \) then \(e_1x \) is in \(e_1xA \) and since \(e_1A \) is in \(A^n \), \(e_1A \) is in \(M_R \) by Theorem 1. Then \(e_1 = 0 \), a contradiction. Thus \(e_1N \neq 0 \), \(\gamma \geq 1 \). Similarly there exists an integer \(\rho \geq 1 \) such that \(N_0^\rho e_i \neq 0 \), \(N_0^{\rho+1}e_i = 0 \). In this way we obtain for each \(e_i \), integers \(\gamma_i \) and \(\rho_i \) such that \(e_iN_{\theta_i} \neq 0 \), \(e_iN_{\theta_i+1} = 0 \), \(N_{\theta_i}e_i \neq 0 \), \(N_{\theta_i+1}e_i = 0 \). Let \(\beta \) be the maximum of the \(\gamma_i \) and \(\rho_i \). Then setting \(e = e_1 + \cdots + e_n \), \(eN_{\beta+1} = N^{\beta+1}e = 0 \), and either \(eN_{\beta} \) or \(N_{\beta}e \neq 0 \). Suppose \(eN_{\beta} \neq 0 \). Then for some \(e_j, e_jN_{\beta} \neq 0 \). Take \(x' \) in \(N_{\beta} \) such that \(e_jx' \neq 0 \) and let \(x = e_jx' = e_je_jx' = e_jx = e_jx' \). Then \(xN = 0 \). Since \(M_L = 0 \) and \(x \) is in \(Ax \), there must exist (Theorem 1) an element \(y \) in \(A \) such that \(xy \neq 0 \) and such that \(xy \) is not in \(Axy \). We may take \(y = ye_j = ye_jx \). The element \(y \) must be in \(N \). For \(xy \) not in \(Ayx \) implies \(y \) not in \(Ay = Ay_ej \). Thus \(Ay_ej \neq Ae_j \) and since \(Ae_j \) is indecomposable, \(Aye_j \) is nilpotent. Then \(ye_j \cdot ye_j \) is nilpotent, \(ye_j \) is nilpotent and clearly \(ye_j = y \) is properly nilpotent and therefore \(y \) is in \(N \). Then \(xy \) is in \(Ne_jN_{\beta} \leq N_{\beta+1} \) and therefore \(xyx = 0 \). Also \(yxN = 0 \) and thus \(yxA = 0 \). Also \(eyx = 0 \), since \(eN_{\beta+1} = 0 \). Note that \(yx = ye_jx = ye_j^{\beta-2}x \) is in \(A^n \) for every \(n \). If \(xy \) is not a total zerodivisor, \(Axy \neq 0 \). Then, \(Nxy \neq 0 \), since \(eyx = 0 \). Let \(y_1 \) be an element in \(N \) such that \(y_1yx \neq 0 \). As above \(y_1yx = ey_1yx = 0 \). If \(y_1yx \) is not a total divisor of zero, \(Ny_1yx \neq 0 \). We continue this process until \(t = y_{\beta-1} \cdots y_1yx \neq 0 \), \(tA = 0 \), \(et = 0 \). Then \(t \) is in \(N_{\beta}e_jN_{\beta} \) and \(Nt \) is in \(N_{\beta+1}e_jN_{\beta} \). Thus \(At = tA = 0 \), and \(t = y_{\beta-1} \cdots y_1ye_j^n \) is in \(A^n \) for every \(n \). This is impossible and thus \(e_i = 0 \) for every \(i \), \(A = N_0 \), \(A \) is nilpotent. Q.E.D.

The Hopkins example mentioned earlier shows that the divisor of zero restrictions cannot be removed, for \(M_R = 0 \), \(A \) has DCC and is not nilpotent. To obtain an example for Theorem 6, let \(A \) be an algebra of dimension 4 over a field \(F \), with basal elements \(e, u, v, w \) and the following multiplication table:
Then $M_R = M_L = 0$ and A is not nilpotent. The radical is generated by u, v, and w. The element w is a total divisor of zero and in A^n for every n. This algebra is in fact subdirectly irreducible with minimal ideal generated by u, v, and w. The element w is a total divisor of zero and in A^n for every n. This algebra is in fact subdirectly irreducible with minimal ideal generated by w. For let I be any ideal of A, with $x = \alpha e + \beta u + \gamma v + \delta w$ in I. Then $xe = \alpha e + \beta u$, $ex = \alpha e + \gamma v$, $xv = \alpha v$, $ux = \alpha u$. Then if $\alpha \neq 0$, I contains u, v and then w, and also e, $I = A$. If $\alpha = 0$, I contains βu and γv and therefore δw. If $\beta \neq 0$, then u and w are in I. If $\gamma \neq 0$, v and w are in I. If $\beta = \gamma = 0$, $I = (w)$. Thus there are precisely five nonzero ideals: (w), (u, v), (v, w), (u, v, w), (u, v, w, e). Since w is not in M_R or M_L, they are zero.

We now return to the commutative case but drop DCC. Then $M = \{x: x \text{ is in } xA\}$ and thus M contains all idempotents. In (1) all M'_i = the corresponding M_i.

Theorem 7. If A is commutative then $M = 0$ if and only if A is isomorphic to a subdirect sum of subdirectly irreducible rings with an absolute divisor of zero in their minimal ideals. That is, they are of type β [7].

From [7] we know that a commutative subdirectly irreducible ring with the ascending chain condition is either nilpotent or has a unity element. Thus we have

Theorem 8. If A is commutative with ACC then $M = 0$ if and only if A is isomorphic to a subdirect sum of nilpotent subdirectly irreducible rings.

Though Theorems 7 and 8 seem to yield radical-like results, this may be misleading. Let A be the ring of even integers. It has ACC but not DCC. Also $M = 0$ and A is isomorphic to a subdirect sum of nilpotent rings, namely

$$A = (A/(4), A/(8), \ldots, A/(2^n), \ldots)$$

where $A/(2^n)$ has 2^{n-1} as an absolute divisor of zero and is nilpotent for every n. However $J = 0$ and therefore A is isomorphic to a subdirect sum of fields, namely

$$A = (A/(6), A/(10), A/(14), \ldots, A/(2p), \ldots)$$
where p is a prime. Thus A may be semi-simple and still have $M = 0$. This example also shows that DCC is necessary to obtain nilpotence. To see that ACC is necessary to obtain a subdirect sum of nilpotent rings, we may consider the example in [7] which is commutative, subdirectly irreducible, has neither chain condition, has $M = 0$ and is not nilpotent.

3. **The cases** $A = M_R$, $A = M_L$, $A = M_R = M_L$. In studying the existence of right, left and two sided unities, Baer [1; 2; 3], concerned himself to some extent with right and left D-regularity. We summarize some of his results in the language of M_R, M_L and M:

With DCC on one-sided ideals:

1. $A = M_R$ if and only if A has a right unity.
2. $A = M_R = M_L$ if and only if A has a unity.
3. A commutative, $A = M$ if and only if A has a unity.

If $A - J$ has a unity or if $A - J$ has DCC on one-sided ideals:

2a. $A = M_R = M_L$ if and only if A has a unity.
3a. A commutative, $A = M$ if and only if A has a unity.

However la needed some strengthening:

1b. A has a right unity if and only if $A = M_R$ and when $A = J + Ax$, x must be in Ax.

Baer also proved, for a ring with DCC on one-sided ideals:

1. A has a right unity if and only if A has a non-right-zero divisor, i.e. an element x such that $yx = 0$ implies $y = 0$.

Let A be a ring with ACC on left ideals. Then, as is well known, every left ideal of A is finitely generated and in particular $M_R = \{ \sum^n_i n_i a_i + x_i a_i \}$, x_i in A, a_i in M_R, n_i integers. By the corollary to Lemma 5, there exists an element e in A such that $M_R = M_Re$, pointwise. If we assume $M_R = A$, e is a right unity element.

Theorem 9. If A has ACC on left ideals, then A has a right unity if and only if $A = M_R$.

Passing now to rings without chain conditions, we first prove

Lemma 6. A has a left unity if and only if there exists an element x in A such that x is in xA and x is not a left zero divisor.

Proof. If A has a left unity f, then f is in fA, and if $fy = 0$ then clearly $y = 0$. Conversely if x is in xA, $x = xe$, then for every y, $x(y - ey) = 0$ and since x is not a left zero divisor, $y = ey$, e is a left unity.

Note that if x were also not a right zero divisor, then A would have a unity. For $x = ex = xe$ and $(y - ye)x = 0$ yields $y = ye$ for every y.

Corollary. A has a unity if and only if either M_R or M_L has a non-zero-divisor.
We thus have for rings without chain conditions:

Theorem 10.

a. If \(A = M_R \), then \(A \) has a left unity if and only if \(A \) has a non-left-zero-divisor; \(A \) has a unity if and only if \(A \) has a non-zero-divisor.

b. If \(A = M_L \), \(A \) has a right unity if and only if \(A \) has a non-right-zero-divisor.

c. If \(A = M_R = M_L \), then \(A \) has a unity if and only if \(A \) has a non-zero-divisor if and only if \(A \) has a non-right and a non-left-zero-divisor.

Note that then if \(A = M_R = M_L \) and if \(A \) has neither a right nor a left unity, then every element of \(A \) is a two-sided divisor of zero.

In the commutative case, when \(A = M \) it is thus clear that \(A \) has a unity if and only if \(A \) has a non-zero-divisor. We can obtain more. For when \(A \) is expressed as a subdirect sum of subdirectly irreducible rings \(A_i \), each \(A_i \) must be equal to its \(M_i \): Let \(x \) be any element of \(A_i \).

It must appear in the expansion of some element, say \(x = (x_1, \cdots, x_i, \cdots) \). Since \(A = M \), there exists an element \(y \) in \(A \) such that \(xy = x \). Let \(y = (y_1, \cdots, y_i, \cdots) \). Then \(x_i y_i = x_i \) and \(x_i \) is in \(M_i \), \(A_i = M_i \). However from [7], it is clear that if a commutative subdirectly irreducible ring is equal to its maximal \(D \)-regular ideal, it has a unity element. In fact it is either a field or has a unity and is a field modulo its set (an ideal) of zero-divisors. If in addition it has ACC, it is either a field or has a unity and is a field modulo its maximal nilideal. Thus we have:

Theorem 11. If \(A \) is a commutative ring and \(A = M \), then \(A \) is isomorphic to a subdirect sum of subdirectly irreducible rings each with a unity. Some are fields and others are fields modulo the ideal of zero-divisors. If \(A \) has ACC, the latter set are fields modulo their maximal nilideals.

Of course \(A \) itself may not have a unity, for let \(A \) be the weak direct sum of an infinite number of fields. Every element of \(A \) is a zero-divisor and \(A \) has no unity.

In summary we have:

\(A = M_R = M_L \) if and only if \(A \) has a unity and any one of the five following conditions: DCC on one-sided ideals; ACC on one-sided ideals; a unity element in \(A - J \); a non-zero-divisor; a non-left and non-right-zero-divisor.

\(A = M_R \) if and only if \(A \) has a right unity and one of the following three conditions: DCC on right ideals; ACC on left ideals; \(A - J \) has a unity element and \(A = J + Ax \) implies that \(x \) must be in \(Ax \).
$A = M_R$ implies that A has a left unity, if it has a non-left-zero-divisor.

$A = M_R$ if and only if A has a unity, if A has a non-zero-divisor.

Bibliography

University of Manitoba