

ON A PROBLEM OF D. R. HUGHES

E. G. STRAUS AND G. SZEKERES

D. R. Hughes (Bull. Amer. Math. Soc. vol. 63 (1957) p. 209) has proposed the following problem:

Let \(G \) be a group and \(p \) a prime. Define \(H_p(G) \) to be the [normal] subgroup of \(G \) generated by all the elements of \(G \) which do not have order \(p \). Is the following conjecture true: either \(H_p(G) = \{1\} \) or \(H_p(G) = G \) or \([G:H_p(G)]=p\)?

He remarks that the conjecture is true for \(p = 2 \).

In this note we prove Hughes' conjecture for \(p = 3 \).

We shall use the following notation: if \(h, g_1, \ldots, g_n \in G \) and \(a_1, \ldots, a_n \) are integers then

\[
\begin{align*}
 h^{a_1 g_1 + \cdots + a_n g_n} &= g_1^{-1} h^{-1} g_1^{-1} h g_2^{-1} h^{-1} g_2^{-1} h g_3^{-1} h^{-1} g_3^{-1} h \cdots g_n^{-1} h g_n^{-1}.
\end{align*}
\]

Lemma 1. If \(h \in H_p, x \in H_p \) then

\[
 h^{1+x+x^2+\cdots+x^{p-1}} = 1.
\]

Proof. Since \(x^{p-1} \in H_p \), all elements of \(H_p x^{p-1} \) have order \(p \). In particular

\[
 1 = (hx^{p-1})^p = hx^{p-1} \cdot hx^{p-1} \cdots hx^{p-1} = h \cdot x^{-1} h x^{-1} x^{-2} h x^2 \cdots x^{-(p-1)} h x^{p-1} = h^{1+x+\cdots+x^{p-1}}.
\]

Lemma 2. If \(h \in H_3 \) and \(xH_3 \not\subset yH_3 \) then \(h^{z+v} = h^z h^v \).

Proof. By hypothesis \(z = x^{-1} y \in H_3 \). Hence by Lemma 1

\[
 1 = h_1^{1+z+s^2} = h_1^{1+z^2+s}, \quad h_1 \in H_3
\]

Received by the editors July 5, 1957.
or $h_1^2z^2 = h_1z^2$. Setting $h_1 = h^zz$ proves the lemma.

Theorem. If $[G : H_3] > 3$ then $H_3 = \{1\}$.

Proof. Since all elements of G/H_3 are of order 3, every finitely generated subgroup of G/H_3 is finite by Burnside's theorem. In particular, therefore, G/H_3 has an Abelian subgroup of order 9. Let such a subgroup be generated by xH_3, yH_3. We have

$$3 = -(1 + x + x^2)y - y^2(1 + x + x^2) + (1 + y + y^2)$$

$$+ (1 + xy + y^2x^2) + (1 + x^2y + y^2x) = f(x, y).$$

But according to Lemma 2 we have therefore $h^3 = h^{f(z, y)}$ for every $h \in H_3$, and by Lemma 1 this implies $h^3 = 1$. In other words H_3 contains only the identity.

University of California, Los Angeles and University of Adelaide