THE EXISTENCE OF OUTER AUTOMORPHISMS OF SOME GROUPS, II

RIMHAK REE

Developing the idea used in [3], we prove a few results concerning the “size” of the groups of automorphisms of some nilpotent groups.

Theorem 1. If G is a finite p-group every element of which satisfies the equation $x^p = e$ (the unit element of G), and if G is of order greater than p^2, then the order of G divides the order of the group of automorphisms of G.

Proof. First we consider the case where G is not abelian. Evidently there exists a normal subgroup N of G which contains the center Z of G such that G/N is cyclic of order p. Let a be an element in G such that aN generates the group G/N, and let Z_N be the center of N. Clearly Z_N is a normal subgroup of G, and $Z \leq Z_N$. The mapping $\phi: Z_N \to Z_N$ defined by $\phi(x) = [x, a] = xax^{-1}a^{-1}$ is easily seen to be a homomorphism into. Denote by $\phi(Z_N)$ and K the image and the kernel of ϕ respectively. Since $Z_N / K \cong \phi(Z_N)$ and $Z \leq K$, we have

$$\langle Z : 1 \rangle \mid \langle Z_N : \phi(Z_N) \rangle.$$

Denote now by \mathfrak{A} and \mathfrak{I} the group of automorphisms of G and the group of inner automorphisms of G respectively. For any $x \in Z_N$ define a mapping $\sigma(x): G \to G$ by

$$(a^ru)^{\sigma(x)} = (ax)^r u,$$

where $u \in N$, and r is an integer modulo p. We shall show that $\sigma(x)$ is an automorphism of G. We have, for $u, v \in N$,

$$(a^rua^sv)^{\sigma(x)} = (a^{r+s}[a^{-s}, u]uv)^{\sigma(x)} = (ax)^{r+s}[a^{-s}, u]uv,$$

$$(a^ru)^{\sigma(x)}(a^sv)^{\sigma(x)} = (ax)^r u(ax)^{\sigma(x)} = (ax)^{r+s}[ax^{-s}, u]uv.$$

Since, however, $(ax)^{-s} = a^{-s}x'$ with $x' \in Z_N$, we have $[(ax)^{-s}, u] = [a^{-s}, u]$. It follows that $(a^rua^sv)^{\sigma(x)} = (a^ru)^{\sigma(x)}(a^sv)^{\sigma(x)}$. If $(a^ru)^{\sigma(x)} = (ax)^{-s}u = e$ then $a^rx' = e$. Hence $r \equiv 0 \pmod{p}$, $u = e$, and $a^ru = e$. Now any element in G is clearly an image under the mapping $\sigma(x)$. Therefore $\sigma(x)$ is an automorphism of G. Since $(a^x)^{\sigma(y)} = (ax)^{\sigma(y)} = ayx = a^{\sigma(y)}$ for any $x, y \in Z_N$ and since $x = e$ if $\sigma(x)$ is the identity automorphism of G, it follows that the mapping $\sigma: Z_N \to \mathfrak{A}$ is an isomorphism into. We shall show that

Received by the editors, March 5, 1957.
Indeed, if $\sigma(x)$ is an inner automorphism induced by $y = axu \in G$, then $y = y^\sigma(x) = (ax)^r u$ and hence $(ax)^r = a^r$. If $r \equiv 0 \pmod{p}$ then $ax = a$, $x = e$, and hence $\sigma(x) \in \sigma(\phi(Z_N))$. If $r \equiv 0 \pmod{p}$ then $y \in \mathbb{N}$, and since $y^\sigma(x) = yby^{-1} = b$ for all $b \in \mathbb{N}$, we have $y \in Z_N$. Now $ax = a^\sigma(x) = yay^{-1}$, $x = \phi(axay)$, and hence $\sigma(x) \in \sigma(\phi(Z_N))$ and, for any x in Z_N, $\sigma(\phi(x))$ is the inner automorphism induced by axa^{-1}. Hence (2) is proved. From (2) we have

$$\sigma(Z_N) \mathfrak{S} / \mathfrak{S} \cong \sigma(Z_N) / (\sigma(Z_N) \cap \mathfrak{S})$$

(3)

$$\cong Z_N / \phi(Z_N),$$

since σ is an isomorphism into. Since $\sigma(Z_N) : \mathfrak{S}$ divides $(\mathfrak{S} : \mathfrak{S})$, from (1) we have $(Z : 1) | (\mathfrak{S} : \mathfrak{S})$. Hence $(G : 1) = (G : Z)(Z : 1) = (\mathfrak{S} : 1)(Z : 1)$ divides $(\mathfrak{S} : \mathfrak{S})(\mathfrak{S} : 1) = (\mathfrak{S} : 1)$.

Now consider the case where G is abelian. The order of \mathfrak{S} for this case is well-known [5, p. 112]. It is equal to $(p^d - 1)(p^d - p) \cdots (p^d - p^{d-1})$, where p^d denotes the order of G. Since $d \geq 3$, the theorem follows for G abelian. The proof of Theorem 1 is thus complete.

Now let G be a finitely generated torsion-free nilpotent group. Following [2] we define an F-series of G as a finite series $G = F_1 > F_2 > \cdots > F_d > F_{d+1} = \{e\}$ of normal subgroups F_i of G such that $[G, F_i] \leq F_{i+1}$ for all i and such that the factor groups F_i / F_{i+1} are infinite cyclic. It is known [2] that the group G always possesses an F-series and that the length d of any F-series of G is an invariant of G, called the dimension of G. Any d elements f_1, f_2, \cdots, f_d in G, where $d = \dim G$, are said to form an F-basis if the series $G = F_1 > F_2 > \cdots > F_d > \{e\}$, where F_i is the subgroup generated by f_1, \cdots, f_d, is an F-series of G. Given any F-basis f_1, \cdots, f_d, every element a in G is written uniquely as $a = f_1^{r_1} f_2^{r_2} \cdots f_d^{r_d}$, where r_1, r_2, \cdots, r_d are integers. Thus G becomes a linearly ordered group if we order elements in G lexicographically with respect to r_1, r_2, \cdots, r_d. (It was proved in [4] that every linear ordering of G which makes G an ordered group is obtained in this way.) We shall call a linear ordering of G obtained in the above manner regular if the group F_2 generated by f_2, \cdots, f_d contains the center of G, or if G is abelian.

Theorem 2. Let G be a finitely generated torsion-free nilpotent group and let \prec be a linear ordering in G by which G becomes an ordered group. Then the group \mathfrak{A} of automorphisms of G which preserve the ordering \prec is a finitely generated torsion-free nilpotent group. If the ordering \prec is regular and if $\dim G > 2$, then $\dim A \geq \dim G$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. It was shown in [4] that can be obtained from an \(F \)-basis \(f_1, \ldots, f_d \) of \(G \). Denote by \(F_i \) the group generated by \(f_1, \ldots, f_d \). It is clear that the set-theoretic differences \(F_i - F_{i+1} \), \(i = 1, 2, \ldots, d - 1 \), can be characterized as \(C \)-classes in the sense of [4], i.e., classes of comparable elements with respect to the ordering \(<\). Since \(G \) has only a finite number of \(C \)-classes it follows easily that every \(C \)-class \(F_i - F_{i+1} \) and hence every \(F_i \) is invariant under all automorphisms \(\sigma \) of \(G \) which preserve \(<\). We infer that for every \(i \), \(f_i^r \) is of the form \(f_i^r = f_{i+1}^r \cdots f_d^r \), where \(a, \ldots, k \) are integers. In particular, \(f_d^r = f_d \).

Denote by \(\mathfrak{A}_t \), \(t = 1, 2, \ldots \), the subgroup of \(\mathfrak{A} \) consisting of all \(\sigma \in \mathfrak{A} \) such that \(f_i^r \equiv f_i \pmod{F_{i+1}} \) for \(i = 1, 2, \ldots, d \) (we set \(F_{d+1} = F_{d+2} = \cdots = \{e\} \)). Then what we have shown above can be expressed as \(\mathfrak{A} = \mathfrak{A}_1 \), and obviously we have \(\mathfrak{A}_d = 1 \). We shall now show that \([\mathfrak{A}, \mathfrak{A}_t] \leq \mathfrak{A}_{t+1} \) for all \(t \), and that the factor groups \(\mathfrak{A}_t/\mathfrak{A}_{t+1} \) are free abelian groups of finite ranks. Let \(\sigma \in \mathfrak{A}_t \), \(\rho \in \mathfrak{A}_t \). Then for any fixed \(i \) we have \(f_i^r \equiv f_i x, f_i^r \equiv f_i y \pmod{F_{i+1}} \), where \(x \in F_{i+1}, y \in F_{i+1} \). Since \(x^\sigma \equiv x^\rho \equiv x, y^\rho \equiv y \pmod{F_{i+1}} \), we have easily

\[
\begin{align*}
 f_i^{\sigma, \rho} &= f_i y^{-1} x^{-1} y x \pmod{F_{i+1}}.
\end{align*}
\]

But from \([G, F_{i+1}] \leq F_{i+1} \) we have \(y^{-1} x^{-1} y x \in F_{i+1} \). Hence \(f_i^{\sigma, \rho} \equiv f_i \pmod{F_{i+1}} \) for all \(i \). This proves \([\mathfrak{A}, \mathfrak{A}_t] \leq \mathfrak{A}_{t+1} \). In order to prove that \(\mathfrak{A}_t/\mathfrak{A}_{t+1} \) is a free abelian group of finite rank, let \(\sigma \in \mathfrak{A}_t \) and set

\[
\begin{align*}
 f_i^\sigma &= f_i^{a_i} \pmod{F_{i+1}},
\end{align*}
\]

where \(a_1, \ldots, a_d \) are integers. It is easily seen that the mapping \(\sigma \rightarrow (a_1, \ldots, a_d) \) is a homomorphism of \(\mathfrak{A}_t \) into the additive group \(M \) of all \(d \)-tuples of integers (with the addition defined componentwise), and that the kernel of the homomorphism is exactly \(\mathfrak{A}_{t+1} \). Therefore \(\mathfrak{A}_t/\mathfrak{A}_{t+1} \) is isomorphic to a subgroup of \(M \). Our assertion is now clear.

By refining the series \(\mathfrak{A} \supseteq \mathfrak{A}_2 \supseteq \cdots \supseteq \mathfrak{A}_d \), we obtain easily an \(F \)-series of \(\mathfrak{A} \), and hence \(\mathfrak{A} \) is a finitely generated torsion-free nilpotent group. Thus the first part of the theorem is proved.

We now proceed to prove the second part. If \(G \) is abelian, then \(\mathfrak{A} \) is isomorphic to the multiplicative group of all \(d \times d \) triangular matrices with integral entries and with 1's on the principal diagonal. By arguing the same way as in the above, we see easily that \(\dim \mathfrak{A} = d(d-1)/2 \), where \(d = \dim G \). Since we assume \(d > 2 \), we have \(\dim \mathfrak{A} \geq \dim G \), and hence the second part is proved for \(G \) abelian.

If \(G \) is not abelian, we proceed as in the proof of Theorem 1 by setting \(a = f_1, N = F_2 \). Let \(Z, Z_N, \phi, \) and \(K \) be as in the proof of Theorem
1. It is known [2] that \(G/Z \) is torsion-free. Therefore \(Z_N/K \cong \phi(Z_N) \) and \(Z \leq K \) imply

\[
\dim Z \leq \dim Z_N - \dim \phi(Z_N).
\]

We shall show that the automorphisms \(\sigma(x) \) of \(G \) defined by \((a^ru)^{\sigma(r)} = (ax)^ru\), where \(u \in N \), preserve the ordering \(<\) obtained from the \(F \)-basis \(f_1, \ldots, f_d \). This is seen as follows: \(a^ru > e \) implies \(r > 0 \) or \(r = 0 \) and \(u > e \). If \(r > 0 \) then \((a^ru)^{\sigma(r)} = (ax)^ru = a^x'ru > e\), since \(x'u \in N \). If \(r = 0 \) then \((a^ru)^{\sigma(r)} = u > e\). Thus \(\sigma(x) \) preserves the ordering \(<\).

Also every inner automorphism preserves the ordering \(<\). Since \(G \) is linearly ordered, we can prove (2) by observing that \(\sigma(x)^r = a^r \) with \(r \neq 0 \) implies \(ax = a, x = e \). From (2) we have (3) as before. By (3) and a theorem of Hirsch [1, Theorem 2.23], we may prove easily that \(\dim Z_N - \dim \phi(Z_N) \leq \dim A - \dim Z \). Then from (4) it follows that \(\dim Z \leq \dim A - \dim Z \). Since \(\dim G - \dim Z = \dim Z \), we have the desired result \(\dim G \leq \dim A \). Thus Theorem 2 is proved.

The method of proof used in the above may be applied to similar but more general nilpotent groups, namely nilpotent groups \(G \) which have decreasing series of normal subgroups \(G = G_1 \supset G_2 \supset \cdots \supset G_d \supset \{e\} \) such that \([G, G_i] \leq G_i+1 \) for all \(i \) and such that \(G_i/G_i+1 \) are all isomorphic to the additive group of an integral domain.

By analyzing the main points of the above method we can prove more:

Theorem 3. Let \(p \) be a prime. If a group \(G \) possesses a normal subgroup \(N \) of index \(p \) whose center \(Z_N \neq \{e\} \) is of order \(< p^p \) and if every element \(\neq e \) in \(Z_N \) is of order \(p \), then there exists an outer automorphism of \(G \).

Proof. Let \(a \in G \) be such that \(aN \) generates the group \(G/N \). The mapping \(\alpha: Z_N \rightarrow Z_N \) defined by \(\alpha(x) = axa^{-1} \) is an automorphism of \(Z_N \) of order \(p \). Define a homomorphism \(\beta \) of \(Z_N \) into itself by

\[
\beta(x) = x\alpha(x)\alpha^2(x) \cdots \alpha^{p-1}(x).
\]

Then we see easily that \((ax)^p = \beta(x)a^p\). The argument used in the proof of Theorem 1 shows that for any \(x \in Z_N \) such that \(\beta(x) = e \) there exists an automorphism \(\sigma(x) \) of \(G \) such that \(a^{\sigma(r)} = ax \) and \(u^{\sigma(x)} = u \) for all \(u \in N \). Further \(\sigma(x) \) is an inner automorphism of \(G \) if and only if \(x = (1-\alpha)y \) with \(y \in Z_N \), where \(1 \) denotes the identity automorphism of \(Z_N \). Therefore our theorem is proved if we can derive a contradiction from the assumption that \(x \in Z_N \) is of the form \(x = (1-\alpha)y \), \(y \in Z_N \), whenever \(\beta(x) = e \). Now every element \(\neq e \) of the abelian group \(Z_N \) is of order \(p \). Hence \(1 = \alpha^p \) implies \((1-\alpha)^p = 0 \), where \(0 \)
denotes the homomorphism of Z_N into itself which carries every element into e. Hence

$$\beta = 1 + \alpha + \cdots + \alpha^{p-1} = (1 - \alpha)^{p-1}. \quad (5)$$

Now, for $i=1, 2, \cdots, p$, let

$$Z_i = \{x \mid x \in Z_N, (1 - \alpha)^i x = e\}.$$

Then we have $Z_i \supseteq Z_{i-1}$. We shall show that the equality can not hold. Suppose $Z_i = Z_{i-1}$ for some $i > 0$. Now for any $x \in Z_N$ we have

$$(1 - \alpha)^i((1 - \alpha)^{p-i}x) = (1 - \alpha)^{p-i}x = e.$$

Thus the assumption $Z_i = Z_{i-1}$ implies that

$$(1 - \alpha)^{i-1}((1 - \alpha)^{p-i}x) = (1 - \alpha)^{p-i}x = e$$

for all $x \in Z_N$. Therefore from (5) it follows that $\beta(x) = e$, and hence, by our assumption, that every $x \in Z_N$ is of the form $x = (1 - \alpha)y$. From this it follows easily that every element $x \in Z_N$ is of the form $x = (1 - \alpha)^{p}z = e$. Therefore $Z_N = \{e\}$, contradicting our assumption $Z_N \not= \{e\}$. Therefore $Z_i \not= Z_{i-1}$. Similarly we may prove $Z_1 \not= \{e\}$. Now from the fact that the series $Z_N = Z_p > Z_{p-1} > \cdots > Z_1 > \{e\}$ is strictly decreasing it follows that the order of Z_N is $\geq p^p$. This again contradicts our assumption that the order of Z_N is $< p^p$. This completes the proof.

References

The University of British Columbia