On the Hilbert matrix. I
HTML articles powered by AMS MathViewer
- by Marvin Rosenblum
- Proc. Amer. Math. Soc. 9 (1958), 137-140
- DOI: https://doi.org/10.1090/S0002-9939-1958-0094626-0
- PDF | Request permission
References
- A. Erdélyi, Higher transcendental functions, I, 1953.
G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, 1952.
- C. K. Hill, The Hilbert bound of a certain doubly-infinite matrix, J. London Math. Soc. 32 (1957), 7–17. MR 84121, DOI 10.1112/jlms/s1-35.1.128-s A. E. Ingham, A note on Hilbert’s-inequality, J. London Math. Soc. vol. 11 (1936) pp. 237-240.
- Tosio Kato, On the Hilbert matrix, Proc. Amer. Math. Soc. 8 (1957), 73–81. MR 83965, DOI 10.1090/S0002-9939-1957-0083965-4
- Wilhelm Magnus, Über einige beschränkte Matrizen, Arch. Math. 2 (1949/50), 405–412 (1951) (German). MR 44030, DOI 10.1007/BF02036945
- Hari Shanker, An integral equation for Whittaker’s confluent hypergeometric function, Proc. Cambridge Philos. Soc. 45 (1949), 482–483. MR 29452, DOI 10.1017/S0305004100025111 G. Szegö, Orthogonal polynomials, Amer. Math Soc. Colloquium Publications, vol. 23, 1939. O. Taussky, Bull. Amer. Math. Soc. Research Problem 60-3-12. E. C. Titchmarsh, Theory of functions, 2d ed., 1939. E. T. Whittaker and G. N. Watson, Modern analysis, 4th ed., 1952. A. Zygmund, Trigonometrical series, 1936.
Bibliographic Information
- © Copyright 1958 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 9 (1958), 137-140
- MSC: Primary 40.00; Secondary 46.00
- DOI: https://doi.org/10.1090/S0002-9939-1958-0094626-0
- MathSciNet review: 0094626