A variational method for starlike functions
HTML articles powered by AMS MathViewer
- by J. A. Hummel
- Proc. Amer. Math. Soc. 9 (1958), 82-87
- DOI: https://doi.org/10.1090/S0002-9939-1958-0095273-7
- PDF | Request permission
References
- G. M. Goluzin, On a variational method in the theory of analytic functions, Leningrad. Gos. Univ. Učen. Zap. Ser. Mat. Nauk 144(23) (1952), 85–101 (Russian). MR 0077640
- Gaston Julia, Sur une équation aux dérivées fonctionnelles liée à la représentation conforme, Ann. Sci. École Norm. Sup. (3) 39 (1922), 1–28 (French). MR 1509240
- Z. Nehari and E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proc. Amer. Math. Soc. 8 (1957), 15–23. MR 83038, DOI 10.1090/S0002-9939-1957-0083038-0
- A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, American Mathematical Society Colloquium Publications, Vol. 35, American Mathematical Society, New York, N. Y., 1950. With a Chapter on the Region of the Derivative of a Schlicht Function by Arthur Grad. MR 0037908
- A. C. Schaeffer, M. Schiffer, and D. C. Spencer, The coefficient regions of schlicht functions, Duke Math. J. 16 (1949), 493–527. MR 31050 M. Schiffer, A method of variation within the family of simple functions, Proc. London Math. Soc. vol. 44 (1938) pp. 432-449. —, Applications of variational methods in the theory of conformal mapping, Proceedings of the Symposia in Applied Mathematics, 1956 (to appear).
Bibliographic Information
- © Copyright 1958 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 9 (1958), 82-87
- MSC: Primary 30.00
- DOI: https://doi.org/10.1090/S0002-9939-1958-0095273-7
- MathSciNet review: 0095273