On the convergence and summability of a series associated with the derived Fourier series
HTML articles powered by AMS MathViewer
- by P. C. Rath and R. Mohanty
- Proc. Amer. Math. Soc. 9 (1958), 11-17
- DOI: https://doi.org/10.1090/S0002-9939-1958-0096071-0
- PDF | Request permission
References
- L. S. Bosanquet, Proc. London Math. Soc. vol. 31 (1930) pp. 147-148.
J. J. Gergen, Quart. J. Math. Oxford Series vol. 1 (1930) p. 261.
G. H. Hardy, Messenger of Math. vol. 58 (1928) pp. 50-52.
—, Quart. J. Math. Oxford Ser. vol. 2 (1931) p. 108.
G. H. Hardy and J. E. Littlewood, Proc. London Math. Soc. vol. 24 (1925) pp. 211-246, Theorem 5.
—, J. London Math. Soc. vol. 1 (1926) pp. 134-138.
- G. H. Hardy and W. W. Rogosinski, Fourier series, Cambridge Tracts in Mathematics and Mathematical Physics, No. 38, Cambridge, at the University Press, 1950. 2nd ed. MR 0044660 S. J. Pollard, London Math. Soc. no. V vol. 2 (1927) p. 261. W. H. Young, Comptus Rendus vol. 163 (1916) pp. 137-190.
- Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952. 2nd ed. MR 0076084
Bibliographic Information
- © Copyright 1958 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 9 (1958), 11-17
- MSC: Primary 42.00
- DOI: https://doi.org/10.1090/S0002-9939-1958-0096071-0
- MathSciNet review: 0096071