PREFERRED OPTIMAL STRATEGIES

R. C. BUCK

Let Γ be the normalized two person zero sum game defined by a pay-off function $M(x, y)$, for $x \in A$, $y \in B$. If A and B are compact convex sets in a finite dimensional space, and M is bilinear, then Γ is strictly determined. Then Γ has a value $v(\Gamma)$, and the players have optimal strategy sets $A_1 \subset A$, $B_1 \subset B$, such that $M(x, y_1) \leq v(\Gamma) \leq M(x_1, y)$ for any choices of $x \in A$, $x_1 \in A_1$, $y \in B$, $y_1 \in B_1$. We may denote the game Γ by (M, A, B). (See [1; 2].)

This note is concerned with games in which the first player P_1 has more than one optimal strategy. Since A_1 is convex, there are then an infinite number. Against an optimal strategy of P_2, none of these will achieve more than $v(\Gamma)$. However, if P_2 should play nonoptimally, P_1 might obtain more than $v(\Gamma)$, and the outcome might depend upon which optimal strategy from the set A_1 he chooses. In many applications of game theory, it is desirable to have a systematic procedure for choosing a preferred strategy \hat{x} in A_1 which will take advantage of the possibility of error (nonintelligent action) on the part of the second player. Such a procedure will be given in this note; the resulting preferred optimal strategy is unique, up to equivalence, when the set B is a polyhedron.

Two first player strategies, x' and x'', are said to be equivalent for the same Γ if $M(x', y) = M(x'', y)$ for all $y \in B$. When B is polyhedral, it has only a finite number of extreme points π. These we call "pure" strategies for P_2. Any $y \in B$ is then a finite convex combination of pure strategies. We divide the pure strategies of the second player into two classes. A pure strategy π is good if it is present in at least one optimal P_2 strategy (i.e. if it occurs with nonzero coefficient in an optimal strategy). All other pure strategies are called poor. The dichotomy can also be made analytically. If π is a good pure strategy, then $M(x_1, \pi) = v(\Gamma)$ for every optimal $x_1 \in A_1$; if π is a poor pure strategy, then there is at least one $x_1 \in A_1$ with $M(x_1, \pi) > v(\Gamma)$.

Let $B(1)$ be the closed convex hull of the set of poor pure strategies of P_2.

Theorem 1. The following statements are equivalent: (i) $B(1)$ is void, (ii) B_1 contains a point interior to B, (iii) all the strategies in A_1 are equivalent.

Received by the editors August 28, 1957.

1 This work was partially supported by the Office of Ordnance Research, U. S. Army.
Let B_* be the set of all points $y \in B$ such that $M(x, y) = v(T)$ for every optimal $x \in A_1$. This set is convex and contains B_1, but is disjoint from $B^{(1)}$. Moreover, any line segment in B which contains a point of B_* in its interior, lies wholly in B_*; thus, B_* is the convex hull of the set of good pure strategies. When (ii) holds, $B = B_*$. When (ii) fails, B_* is the face of B containing B_1, and $B \neq B_*$. Finally, it is immediate that (i) and (iii) are each equivalent to $B = B_*$.

Construct a new game, $\Gamma = \langle M, A_1, B^{(1)} \rangle$. To this, we may apply the same procedure, generating a sequence of games $\Gamma_1, \Gamma_2, \Gamma_3, \ldots$ with $\Gamma_n = \langle M, A_n, B_n^{(n)} \rangle$. We have $A \supset A_1 \supset A_2 \supset \cdots$ and $B \supset B^{(1)} \supset B^{(2)} \supset \cdots$; A_{n+1} is the set of optimal strategies for P_1 in the game Γ_n, and B_{n+1} is the convex hull of the poor pure strategies for P_2 in Γ_n. Moreover, the vertices of $B^{(n+1)}$ form a proper subset of those of $B^{(n)}$. When B is polyhedral, having a finite number of vertices, we must reach an integer N such that $B^{(N+1)}$ is void. In the game Γ_N, P_2 will have no poor pure strategies. By Theorem 1, then, all of the optimal strategies \hat{x} in the set $A_\infty = A_{N+1}$ are then equivalent in the game Γ_N.

Theorem 2. The strategies \hat{x} in A_∞ are all equivalent in Γ.

Let $\hat{x} \in A_\infty$. Then, $\hat{x} \in A_n$ for any n. If π is any extreme point of B which is a good strategy for P_2 in Γ_n, then $M(\hat{x}, \pi) = v(\Gamma_n)$. Every extreme point π is good in Γ, or in one of the games Γ_j. Thus, $M(\hat{x}, \pi) = M(x, \pi)$, for every π and any choice of $x \in A_\infty$. Since B is the convex hull of the points π, $M(\hat{x}, y) = M(x, y)$ for every $y \in B$, and any choice of $x \in A_\infty$. Thus, all of the points of the set A_∞ are equivalent in Γ.

By this process, then, we have arrived at a strategy \hat{x} which is optimal in each of the games $\Gamma, \Gamma_1, \Gamma_2, \ldots$, and which (when B is polyhedral) is unique, up to equivalence. When B is not polyhedral, the sequence $B^{(n)}$ may not terminate. However, the strategies in the set A_∞ still have the desirable properties described above, and are preferred optimal strategies.

We give a simple illustration. Consider the rectangular game whose (discrete) pay off matrix is:

$$W = \begin{bmatrix} 6 & 1 & 5 & 8 & 5 \\ 2 & 7 & 3 & 4 & 4 \\ 6 & 1 & 7 & 4 & 5 \end{bmatrix}.$$

If Γ is the mixed game derived from W, so that A is a triangle and B a 4-simplex, then $v(\Gamma) = 4$, P_1 has two basic (extreme) optimal strategies $x' = (1/2, 1/2, 0)$, $x'' = (0, 1/2, 1/2)$ and P_2 has a unique optimal
strategy \(y = (3/5, 2/5, 0, 0, 0) \). The poor pure strategies for \(P_2 \) are columns 3, 4 and 5.

Proceeding as above, the game \(\Gamma_1 \) is then the mixed game obtained from the rectangular matrix

\[
\begin{bmatrix}
4 & 6 & 9/2 \\
5 & 4 & 9/2
\end{bmatrix}
\]

This was obtained by computing \([x', x'']^T W\), and deleting from this matrix the first two columns. The value of \(\Gamma_1 \) is \(v(\Gamma_1) = 9/2 \), and \(P_1 \) has the optimal strategies \((1/2, 1/2)\) and \((1/4, 3/4)\). The last column is optimal for \(P_2 \). Repeating the process, \(\Gamma_2 \) is the mixed game obtained from

\[
\begin{bmatrix}
9/2 & 5 \\
19/2 & 9/2
\end{bmatrix}
\]

We see that \(v(\Gamma_2) = 14/3 \), that \(P_1 \) has a unique optimal strategy \((1/3, 2/3)\), and that \(B^{(2)} \) is empty. Retracing our steps, we arrive at \(\hat{x} = (1/6, 1/2, 1/3) \) which is the unique preferred optimal strategy. Note that its pay-off is \(\hat{x} W = (4, 4, 14/3, 14/3, 9/2) \).

References

University of Wisconsin