1. Introduction. Let E denote a free R-module of rank n over a ring R, and let $GL_n(R)$ be the group of one-to-one R-linear maps of E into itself. When R is (i) a skew-field, (ii) the ring Z of rational integers, (iii) the ring $Z[i]$ of Gaussian integers, or (iv) a noncommutative principal ideal domain ($n \geq 3$ in this case), it has been proved that the group A_n of automorphisms of $GL_n(R)$ is generated by automorphisms of the following types:

(a) $u \rightarrow tut^{-1}$, $t \in GL_n(R)$, (inner),

(b) $u \rightarrow \chi(u)u$,

where χ is a homorphism of $GL_n(R)$ into the group of units of the center of R satisfying $\chi(\lambda I) = \lambda^{-1}$ if and only if $\lambda = 1$.

(c) $u \rightarrow u^\sigma$, σ an automorphism of R,

(d) $u \rightarrow t^{-i}\bar{u}$, $\bar{u} =$ contragredient of u, where $t: E \rightarrow E^*$ is a correlation mapping E onto its dual E^*. (For references concerning these results see [1].)

On the other hand, for the case where $R = K[x]$ is the ring of polynomials in an indeterminate x over a field K, it has been shown [1] that the above types of automorphisms do not generate all the automorphisms of $GL_2(R)$. It is thus clear that one cannot expect these types of automorphisms to generate A_2 unless fairly restrictive conditions are imposed on the ring R.

We shall assume henceforth:

(I) R is a commutative principal ideal domain, integrally closed in its quotient field.

(II) R is Euclidean.

(III) The group of units of R contains more than two elements.

(IV) There exist units $a_\lambda, \lambda \in \Lambda$, in R such that each $t \in R$ is expressible in the form

$$t = \sum_{i=1}^{m} n_i a_i,$$

where Z is the ring of rational integers and Λ is a set of indices. (If char $R = p \neq 0$, then the n_i are chosen from $GF(p)$.)

Integral domains satisfying these conditions certainly exist. For example, let R be the ring of all algebraic integers in a cyclotomic field over the rationals; if R is Euclidean it will satisfy (I)–(IV). As

Presented to the Society, June 15, 1957; received by the editors May 31, 1957.

209
another example, let \(R \) be the ring consisting of all expressions \(x^k f(x) \) where \(f(x) \in K[x] \) is a polynomial in an indeterminate \(x \) over a field \(K \), and where \(k \) ranges over all rational integers.\(^1\) Conditions (I)–(IV) are also valid for this ring.

We shall use the following notations:

\[K = \text{quotient field of } R; \quad (R, +) = \text{additive group of } R; \]
\[U = \text{multiplicative group of units of } R. \]

We shall identify \(GL_2(R) \) with the group of \(2 \times 2 \) matrices over \(R \) with determinant in \(U \). Hereafter let

\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad J = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad X(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, \quad t \in R.
\]

Let '\(X \)' denote the transpose of \(X \) and let \([\alpha, \beta] \) denote a diagonal matrix with diagonal entries \(\alpha, \beta \).

We shall find it convenient to introduce the subgroup \(V \) of \((R, +) \) generated by all differences of units:

\[
V = \sum_{\alpha, \beta \in U} Z(\alpha - \beta),
\]

where (as above) \(Z \) is replaced by \(GF(p) \) if \(\text{char } R = p \neq 0 \). Since \(R \) has a unity element we see that \(1 - (-1) = 2 \in V \). Assume that (IV) holds and let \(t \in R \) be arbitrary, so that there are units \(\{\alpha_i\} \) and integers \(\{n_i\} \) such that

\[
t = \sum_{i=1}^{m} n_i \alpha_i.
\]

Since \(\alpha_i - 1 \in V \) for each \(i \), we find that

\[
t \equiv \sum_{i=1}^{m} n_i \pmod{V}.
\]

If \(1 \in V \), then since \(2 \in V \) we see that

\[
\sum_{i=1}^{m} n_i \equiv 0 \text{ or } 1 \pmod{2}
\]

according as \(t \in V \) or \(t \notin V \). Let \(P(t) \) denote the residue of \(\sum_{i=1}^{m} n_i \pmod{2} \). Then \(P(t) \) is a well-defined function of \(t \) whenever \(1 \in V \), even though the expression for \(t \) as a sum of units may not be unique.

On the other hand, if \(1 \notin V \) then there is an equation

\(^1\) This example was given by Professor N. T. Hamilton.
1958] THE TWO-DIMENSIONAL GENERAL LINEAR GROUP 211

(1) \[1 = \sum_{i=1}^{m} n_i (\alpha_i - \beta_i), \quad n_i \in Z, \quad \alpha_i, \beta_i \in U. \]

We may remark that \(1 \in V \) if and only if some sum of an odd number of units can be zero. Thus \(1 \in V \) for the cases \(R = \mathbb{Z} \) and \(R = \mathbb{Z}[i] \) (ring of Gaussian integers), while \(1 \in V \) for the case where \(R = K[x] \) is a polynomial domain over a field \(K \) of characteristic \(\neq 2 \).

Further we note that by virtue of (IV), the subgroup \(V \) is an ideal of \(R \). For,

\[\left(\sum n_i \alpha_i \right) \cdot \left(\sum m_j (\beta_j - \gamma_j) \right) = \sum n_i m_j (\alpha_i \beta_j - \alpha_i \gamma_j) \in V, \]

where \(n_i, m_j \in Z, \alpha_i, \beta_j, \gamma_j \in U. \)

2. Transvections in \(GL_2 (R) \). We begin by assuming that \(R \) satisfies (I) and (III). If \(\text{char } R = 0 \) an element \(u \in GL_2 (R) \) will be called a transvection if there are more than two elements in \(GL_2 (R) \) conjugate to \(u \) and commuting with \(u \). If \(\text{char } R = p \neq 0 \), an element \(u \in GL_2 (R), \ u \neq I, \) is called a transvection if \(u^p = I. \)

Lemma 1. An element \(u \in GL_2 (R) \) is a transvection if and only if \(u \) is conjugate in \(GL_2 (R) \) to an element of the form \(\alpha X(t), \alpha \in U, t \neq 0. \) Furthermore, if \(\text{char } R = p \neq 0, \) then \(\alpha = 1. \)

Proof. (1) \(\text{Char } R = 0. \) Consider \(u \) as an element of \(GL_2 (K). \) If \(u \) has distinct characteristic roots, then in some extension field of \(K, \) \(u \) is similar to \([a, b], a \neq b. \) On the one hand, only diagonal matrices commute with \([a, b]; \) on the other, any matrix similar to \([a, b] \) must have the same characteristic roots. Hence, there are at most two elements in \(GL_2 (R) \) conjugate to \(u \) and commuting with it, contrary to the definition of transvection. Therefore \(u \) has a repeated characteristic root.

Since \(R \) is a principal ideal domain, then (as is well known) \(u \) is conjugate in \(GL_2 (R) \) to an element of the form \(rX(t), t \in R. \) Then \(r^2 \) is a unit, whence so is \(r. \)

Conversely, let \(u \in GL_2 (R) \) be conjugate in \(GL_2 (R) \) to \(\alpha X(t), t \neq 0, \alpha \in U. \) Let \(\beta_i, \beta_2, \beta_3 \in U \) be distinct. Then the three matrices

\[[\beta_i, 1] \cdot \alpha X(t) \cdot [\beta_i^{-1}, 1] = \alpha X(\beta_i t), \quad (i = 1, 2, 3) \]

commute with and are conjugate to \(\alpha X(t), \) whence it is clear that \(U \) is a transvection.

(2) \(\text{Char } R = p \neq 0. \) If \(u \neq I \) is a transvection it satisfies the equation \(\lambda^p - 1 = (\lambda - 1)^p = 0. \) Hence the characteristic polynomial of \(u \) is \((\lambda - 1)^2, \) so the characteristic roots are both 1. Therefore \(u \) is conjugate in \(GL_2 (R) \) to an element of the form \(X(t). \)

Conversely, any element \(u \in GL_2 (R) \) conjugate to \(X(t) \) clearly

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
satisfies $u^\nu = I$. This completes the proof of the lemma.

Fix an element $t_0 \in R$, and let $\tau \in A_2$. It follows at once from Lemma 1 that to within inner automorphism

$$X(t_0)^r = \epsilon(t_0)X(\sigma(t_0)).$$

Since for each $t \in R$, $X(t)$ is a transvection commuting with $X(t_0)$ it follows (assuming (2)) that $X(t)^r$ is a transvection commuting with $X(\sigma(t_0))$. Consequently

$$X(t)^r = \epsilon(t)X(\sigma(t)), \quad \sigma(t) \in R, \quad \epsilon(t) \in U,$$

for all $t \in R$.

Lemma 2. The mapping $t \mapsto \epsilon(t)$ is a homomorphism of $(R, +)$ into U; the mapping $t \mapsto \sigma(t)$ is an automorphism of $(R, +)$.

Proof. It follows immediately from $X(s)X(t) = X(s+t)$ that ϵ and σ are both homomorphisms.

We now show that σ is an automorphism. If $\sigma(t) = 0$ then $X(t)$ is in the center of $GL_2(R)$, whence $t = 0$. Further, since

$$\{\alpha X(t) : \alpha \in U, t \in R, t \neq 0\}$$

is the set of all transvections commuting with $X(t_0)$ for fixed $t_0 \neq 0$, therefore $\{\alpha X(\sigma(t)) : \alpha \in U, t \in R, t \neq 0\}$ must be the entire set of transvections commuting with $X(\sigma(t_0))$. Hence σ is “onto,” and therefore is an automorphism.

Lemma 3. For all $t \in R$, $\epsilon(t) = \pm 1$.

Proof. For $\tau \in A_2$ set

$$J^\tau = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

where $J = [-1, 1]$. Then $a^2 + bc = d^2 + bc = 1$, $b(a+d) = c(a+d) = 0$. From $JX(t) = X(-t)J$ we deduce $c\sigma(t) + d = \alpha d$ and $c = \alpha c$, where $\alpha = \epsilon(t)^{-2}$. Consequently $c = 0$ or $=1$. However, $c = 0$ implies $\alpha = 1$; therefore $\epsilon(t) = \pm 1$.

Lemma 4. Let $\tau \in A_2$. Changing τ by an inner automorphism we may assume (3) and $S^\tau = S$.

Proof. Set $Y = ST$; then $Y^3 = I$ implies $(Y^r)^3 = I$ for any $\tau \in A_2$. Therefore, the minimum and characteristic polynomials of Y^r are equal and divide $X^3 - 1$.

If $\text{char } R = 3$ then $\lambda^3 - 1 = (\lambda - 1)^3$ whence the characteristic polynomial of Y^r is $\lambda^2 - 2\lambda + 1 = \lambda^2 + \lambda + 1$, and therefore

$$\text{Trace } Y^r = -1.$$
On the other hand, if char $R \neq 3$ and $\lambda^2 + \lambda + 1$ is irreducible over R equation (4) again holds. However, suppose $\lambda^2 + \lambda + 1$ is reducible over R; then the characteristic polynomial of Y is either

$$(\lambda - 1)(\lambda - \omega), (\lambda - 1)(\lambda - \omega^2) \text{ or } (\lambda - \omega)(\lambda - \omega^2) = \lambda^2 + \lambda + 1.$$

Now we have $T^r = \pm X(\sigma(1))$, whence $\det T^r = 1$. From $S^2 = -1$ we deduce $\det S^r = 1$. Therefore $\det Y^r = 1$, whence the characteristic polynomial of Y^r can only be $\lambda^2 + \lambda + 1$. Consequently (4) holds in all cases.

Set

$$S^r = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Then $a^2 + bc = d^2 + bc = -1, b(a + d) = c(a + d) = 0$. Suppose first $b = c = 0$; then $a^2 = d^2 = -1$ implies $a = \pm i = d$. Now $a = d = \pm i$ is impossible since this would imply that S^r is in the center of $GL_2(R)$. On the other hand, $a = -d = \pm i$ contradicts (4). Consequently $d = -a$.

For $t \in R$ we have

$$\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \begin{pmatrix} 1 & t^{-1} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a + ct & b - 2at - ct^2 \\ c & -(a + ct) \end{pmatrix}. $$

Since

$$Y^r = \pm \begin{pmatrix} a & a\sigma(1) + b \\ c & c\sigma(1) - a \end{pmatrix}$$

and trace $Y^r = -1$, we have $c\sigma(1) = \pm 1$, whence $c \in U$. Hence there exists $t_0 \in R$ such that $a + ct_0 = 0$. Changing τ by an inner automorphism with factor $X(t_0)$, we now have

$$S^r = \begin{pmatrix} 0 & b \\ -b^{-1} & 0 \end{pmatrix}.$$

Finally, applying the inner automorphism with factor $[1, b]$ we obtain Lemma 4.

Lemma 5. If τ is any automorphism of $GL_2(R)$ leaving S invariant and satisfying (3) then

$${}^tX(t)^\tau = \epsilon(t){}^tX(\sigma(t)).$$

This follows from $^tX(-t) = S^{-1}X(t)S$.

If τ is an automorphism of $GL_2(R)$ satisfying the hypotheses of Lemma 5 then $(T^rS)^\tau = I$ implies $\epsilon(1)\sigma(1) = 1$. If $\sigma(1) = -1$, by introducing a further inner automorphism with factor J, we may obtain
a new τ with $\sigma(1) = 1$, but now $S^\tau = \pm S$. Then also $\epsilon(1) = \pm 1$.

The foregoing results may be summarized as

Theorem 1. If $\tau \in A_2$, then after changing τ by an inner automorphism if necessary, we have

$$X(t)^\tau = \epsilon(t)X(\sigma(t)), \quad t \in R,$$

(5) $$tX(t)^\tau = \epsilon(t)^tX(\sigma(t)),$$

$$S^\tau = \pm S, \quad \epsilon(1) = \pm 1, \quad \sigma(1) = 1,$$

where τ induces the automorphism $\sigma: (R, +) \rightarrow (R, +)$ and the homomorphism $\epsilon: (R, +) \rightarrow \mathbb{U}$, and where the plus signs go together as do the minus signs.

Lemma 6. If $\tau \in A_2$ satisfies (5) then

$$[\alpha, 1]^\tau = \lambda(\alpha)[\rho(\alpha), 1]$$

where both λ and ρ are endomorphisms of U.

Proof. Set

$$G = \{\alpha X(t) : \alpha \in U, t \in R\}, \quad H = \{\alpha^t X(t) : \alpha \in U, t \in R\},$$

and let K denote the intersection of the normalizers of G and H. Then K consists of all diagonal matrices. Since $G^\tau = G$ and $H^\tau = H$ imply $K^\tau = K$, we see that $[\alpha, \beta]^\tau$ is also diagonal. In particular $[\alpha, 1]^\tau = \lambda(\alpha)[\rho(\alpha), 1]$.

Lemma 7. For all $\alpha \in U, t \in R$ we have

$$\epsilon(\alpha t) = \epsilon(t), \quad \rho(\alpha) = \sigma(\alpha), \quad \sigma(\alpha t) = \sigma(\alpha)\sigma(t).$$

Proof. The decomposition $X(\alpha t) = [\alpha, 1]X(t)\cdot[\alpha, 1]^{-1}$ yields $\epsilon(\alpha t) = \epsilon(t), \sigma(\alpha t) = \rho(\alpha)\sigma(t)$, which implies the result.

Assuming next that R satisfies condition (IV) we prove

Lemma 8. Let $\tau \in A_2$ satisfy condition (5). Then the automorphism σ of $(R, +)$ induced by τ is a ring automorphism of R.

Proof. If $a \in Z$ (Char $R = 0$) or if $a \in GF(p)$ (Char $R = p \neq 0$), then $\sigma(a) = a$. Hence, using (IV) it follows immediately that $\sigma(xy) = \sigma(x)\sigma(y)$ for all $x, y \in R$.

We henceforth assume that R satisfies condition (I)-(IV) of the introduction. We have seen that starting with an automorphism $\tau \in A_2$, after changing τ by an inner automorphism we obtain a new automorphism (again denoted by τ) satisfying

$$X(t)^\tau = \epsilon(t)X(\sigma(t)), \quad S^\tau = \epsilon(1)S, \quad [\alpha, 1]^\tau = \lambda(\alpha)[\sigma(\alpha), 1],$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
where $\epsilon: (R, +) \rightarrow U$ is a homomorphism satisfying $\epsilon(\alpha t) = \epsilon(t)$, $\alpha \in U$, where $\sigma: R \rightarrow R$ is a ring automorphism, and where λ is an endomorphism of U. Now replace τ by a new automorphism $U \rightarrow (U^\tau)\sigma^{-1}$ where σ^{-1} is the automorphism of $GL_2(R)$ induced by the ring automorphism σ^{-1} of R. Again calling this new automorphism τ, we now have an automorphism satisfying

$$X(t)^\tau = \epsilon(t)X(t), \quad S^\tau = \epsilon(1)S, \quad [\alpha, 1]^\tau = \lambda(\alpha)[\alpha, 1],$$

with possibly new maps ϵ and λ.

We find readily from the above that $[1, \alpha]^\tau = \lambda(\alpha)[1, \alpha]$, whence $[\alpha, \alpha]^\tau = \lambda^2(\alpha)[\alpha, \alpha]$.

From this equation we see that as α ranges over all elements of U so does $\alpha \lambda^2(\alpha)$. Thus $\alpha \mapsto \alpha \lambda^2(\alpha)$ must be an automorphism of U, and from this it follows easily that

$$u \mapsto \lambda(\det u) \cdot u$$

is an automorphism μ of $GL_2(R)$. Replacing τ by $\tau \mu^{-1}$, the new automorphism τ now satisfies

$$X(t)^\tau = \epsilon(t)X(t), \quad S^\tau = \epsilon(1)S, \quad [\alpha, 1]^\tau = [\alpha, 1].$$

Now let $t = \sum_{i=1}^{m} n_i \alpha_i$, $\alpha_i \in U$, $n_i \in Z$ (char $R = 0$) or $n_i \in GF(p)$ (char $R = p \neq 0$). Then

$$\epsilon(t) = \prod_{i=1}^{m} \epsilon(n_i \alpha_i) = \prod_{i=1}^{m} \epsilon(n_i) = \prod_{i=1}^{m} (\epsilon(1))^{n_i} = \epsilon(1)^{\sum n_i}.$$

Set $\gamma = \epsilon(1) = \pm 1$. Then the automorphism τ satisfies

$$(6) \quad X(t)^\tau = \gamma^{\sum n_i}X(t), \quad S^\tau = \gamma S, \quad [\alpha, 1]^\tau = [\alpha, 1].$$

We now show that if we define V (as before) to be the subgroup of $(R, +)$ generated by $\{\alpha - \beta; \alpha, \beta \in U\}$, then if $1 \in V$ we must have $\gamma = 1$, while if $1 \in V$ then equations (6) with $\gamma = -1$ define an automorphism η of $GL_2(R)$.

Indeed, if $1 \in V$, then $1 = \sum n_i (\alpha_i - \beta_i)$, $\alpha_i, \beta_i \in U$, so

$$\gamma = \epsilon(1) = \prod \epsilon(n_i \alpha_i - n_i \beta_i) = \prod \epsilon(n_i \alpha_i)(\epsilon(n_i \beta_i))^{-1} = \prod \epsilon(n_i)(\epsilon(n_i))^{-1} = 1.$$

On the other hand, if $1 \in V$, define $P(t)$ as in the introduction. Let $\eta: GL_2(R) \rightarrow GL_2(R)$ be defined by
We shall prove that \(\eta \) induces an automorphism of \(GL_2(R) \), and for this it suffices to show that \(\eta \) is well-defined. Thus, we need only prove that if a power product

\[
\prod \{ X(t_i), S, [\alpha_j, 1] \} = I
\]

in \(GL_2(R) \), then \(n_s + \sum P(t_i) \equiv 0 \) (mod 2), where \(n_s \) is the number of factors equal to \(S^{\pm 1} \).

For \(t \in R \) we have \(t = \sum n_i \alpha_i \) whence

\[
X(t) = \prod X^{n_i}(\alpha_i) = \prod X^{n_i}(1) \equiv T^{P(t)} \pmod{V},
\]

where \(T = X(1) \). Also, \([\alpha, 1] \equiv I \pmod{V} \) for \(\alpha \in U \). Hence, if

\[
\prod \{ X(t_i), S, [\alpha_j, 1] \} = I
\]

then since the subgroup \(V \) of \((R_+^+) \) is also an ideal in \(R \) we have

\[
\prod \{ T^{P(t)} \}, S, I \} \equiv I \pmod{V}.
\]

However, since \(2 \in V \), the only power products of \(S \) and \(T \) which are distinct \(\pmod{V} \) are \(I, S, T, ST, TS \) and \(STS \). Of these, only the first can be \(\equiv I \pmod{V} \) because \(1 \in V \). But if a power product of \(S \) and \(T \) is \(\equiv I \pmod{2} \) then the total number of factors of \(S \) and \(T \) must be even. Hence \(n_s + \sum P(t_i) \equiv 0 \pmod{2} \). This completes the proof that \(\eta \in A_2 \) whenever \(1 \in V \).

To summarize our results we have:

Theorem 2. The group \(A_2 \) of automorphisms of \(GL_2(R) \) is generated by:

1. The inner automorphisms \(u \rightarrow vuv^{-1}, v \in GL_2(R) \),
2. The automorphisms induced by automorphisms of \(R \),
3. The scalar multiplications \(U \rightarrow \lambda(\det u)u \), where \(\lambda \) is an endomorphism of \(U \) for which the map \(\alpha \rightarrow \alpha \lambda^2(\alpha), \alpha \in U \), is an automorphism of \(U \),
4. The automorphism \(\eta \) described in (7), provided that \(1 \in V \).

References