R. L. MOORE'S AXIOM 1' AND METRIZATION

F. BURTON JONES

Let \(S \) be a Hausdorff space for which there exists a simple sequence \(G_1, G_2, \ldots \) of open coverings such that (1) for each \(n \), \(G_n \supseteq G_{n+1} \), and (2) if \(H \) and \(K \) are nonintersecting closed subsets of \(S \) one of which is compact, then for some \(n \) no element of \(G_n \) intersects both \(H \) and \(K \). At the 1957 Summer Meeting of the Society the question arose in connection with Mr. Armentrout's paper, *A study of certain plane-like spaces without the use of arcs*, as to whether or not \(S \) when satisfying certain rather complicated axioms was metric. I remarked that there did exist such nonmetric spaces. This observation was incorrect.

Theorem. The space \(S \) is metric.

Proof. Let \(p \) be a point of an open set \(R \). There exists a natural number \(n \) such that if \(g, h \in G_n \), \(p \in g \), and \(g \cdot h \neq 0 \), then \(g + h \subseteq R \). For suppose, on the contrary, that for each natural number \(n \), there exist \(g_n, h_n \in G_n \), \(p \in g_n \), \(g_n \cdot h_n \neq 0 \) and \((g_n + h_n) \cdot (S - R) \neq 0 \); let \(p_n \) be a point of \(g_n \cdot h_n \). Obviously \(p_1, p_2, \ldots \) converges to \(p \). Let \(H = R \cdot (p + p_1 + p_2 + \cdots) \) and let \(K = S - R \). Both \(H \) and \(K \) are closed and \(H \) is compact. Furthermore, for each \(n \) some element of \(G_n \) intersects both \(H \) and \(K \). This is a contradiction.

It now follows from Moore's metrization theorem [1] that \(S \) is metric.

References

The University of North Carolina and
The Institute for Advanced Study

Presented to the Society, November 30, 1957; received by the editors, November 9, 1957.

1 A National Science Foundation Senior Postdoctoral Fellow.
2 Cf., Moore's Axiom 1' in [2, p. 324].
3 Abstract number 797, Bull. Amer. Math. Soc. vol. 63 (1957) p. 403