ON TRANSITIVE TRANSLATION FUNCTIONS

JAMES W. SCHLESINGER

From the definition\(^2\) of a fiber space \((E, B, p)\) in terms of a lifting function,

\[
\lambda: \{(e, \omega) \in E \times B' \mid p(e) = \omega(0)\} \rightarrow E' \text{ such that } p \circ \lambda(e, \omega) = \omega,
\]

we are led to a translation function

\[
\tau: \{(e, \omega) \mid p(e) = \omega(0)\} \rightarrow E \text{ where } \tau(e, \omega) = \lambda(e, \omega)(1).
\]

We may also consider the maps \(\tau(\omega): p^{-1}(\omega(0)) \rightarrow p^{-1}(\omega(1))\) defined by \(\tau(\omega)(e) = \tau(e, \omega)\). A translation function is transitive if \(\tau(\omega_1 \cdot \omega_2) = \tau(\omega_2) \circ \tau(\omega_1)\) where

\[
\omega_1(1) = \omega_2(0) \text{ and } (\omega_1 \cdot \omega_2)(t) = \begin{cases}
\omega_1(2t) & \text{for } 0 \leq t \leq 1/2, \\
\omega_2(2t - 1) & \text{for } 1/2 \leq t \leq 1.
\end{cases}
\]

The question of when transitive translation functions exist for fiber bundles was raised by W. Hurewicz. The answer this paper supplies is the following.

If a bundle over a finite polyhedron has a structural group \(G\) with no small subgroups then it has a transitive translation function if and only if it is equivalent in \(G\) to an \(H\) bundle where \(H\) is a totally disconnected subgroup of \(G\).

The central result of this paper is that if \(\tau\) is a transitive translation function and the structural group has no small subgroups, then \(\tau(\omega)\) depends only on the homotopy class of \(\omega\).

All spaces we consider will be Hausdorff spaces; path spaces will have the compact-open topology.

Remarks. For path spaces one may take as a basis all sets of the form \(N = \bigcap_{i=1}^{2^n} \left(\left[\frac{(i-1)/2^n}{i/2^n}\right], U_i\right)\).

A sequence \(\omega_n\) converges to the constant \(x_0\) in the path space \(X'\) if and only if every neighborhood \(U\) of \(x_0\) in \(X\) contains all but a finite number of the sets \(\omega_n(I)\). That this is not true for Moore paths pre-

\(^1\) This research was supported in part by the United States Air Force under Contract No. AF 18(603)-91, monitored by the Air Force Office of Scientific Research, Air Research and Development Command.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
vents the extension of our results to translation functions defined on Moore paths.

Definitions. A triple \((E, B, p)\) is a regular fiber space if there exists a function \(\tau: \{(e, \omega) \mid p(e) = \omega(0)\} \to E\) such that \(p(\tau(e, \omega)) = \omega(1)\) and \(\tau(e, \omega) = e\) if \(\omega(1) = e\). A fiber space is homeomorphic if each of the maps \(\tau(\omega)\) is a homeomorphism.

A fiber space is transitive if \(\tau(\omega_1 \cdot \omega_2) = \tau(\omega_2) \circ \tau(\omega_1)\).

In the case of a fiber bundle \((E, B, p, Y, G)\) over a paracompact base space \(B\), the Hurewicz uniformization theorem gives the result: \((E, B, p)\) is a regular homeomorphic fiber space and \(\tau(\omega)\) may be identified with a member of \(G\) through any two applicable coordinate maps. We shall therefore define a translation function \(\tau\) for the bundle \((E, B, p, Y, G)\) as a regular homeomorphic translation function for \((E, B, p)\) with the property that \(\phi_i^{-1}(\omega(1))\tau(\omega)\phi_j(\omega(0)) \in G\) for some pair (and therefore all pairs) of coordinate functions \(\phi_i, \phi_j\) such that \((\omega(1), \omega(0)) \in V_i \times V_j\).

Definition. \(\omega^*\) is a reparametrization of \(\omega\) if there exists a sense preserving homeomorphism \(f\) of the unit interval onto itself such that \(\omega^* = \omega \circ f\).

Lemma. If \(\omega^*\) is a reparametrization of \(\omega\) and \(\tau\) a transitive translation function, then \(\tau(\omega) = \tau(\omega^*)\).

From the associativity of the composition of maps we know that \(\tau(\omega_1 \cdots \omega_n) = \tau(\omega_n) \circ \cdots \circ \tau(\omega_1)\) is independent of the bracketting of \(\omega_1 \cdots \omega_n\). In this proof we shall approximate \(\omega^*\) by a path \(\omega'\) which is obtained from \(\omega\) by letting \(\omega = \omega_1 \cdots \omega_2^m\) in the canonical bracketting (defined below) and \(\omega' = \omega_1 \cdots \omega_2^m\) in another bracketting. The continuity of \(\tau\) then gives the result. We shall use the phrase “\(\omega = \omega_1 \cdots \omega_2^n\) where the bracketting is canonical” to mean \(\omega = \tilde{\omega} \cdot \bar{\omega}\) where \(\tilde{\omega} = \omega_1 \cdots \omega_2^{m-1}\) and \(\bar{\omega} = \omega_2^{m-1+1} \cdots \omega_2^n\) where in each case the bracketting is canonical. The canonical bracketting is defined only when the number of factors is a power of 2.

Proof of Lemma. Let \(\omega^*(t) = \omega(f(t))\) and \(N\) be a neighborhood of \(\omega^*\). We may assume \(N = \cap_{i=1}^{2^n} \left([((i-1)/2^n, i/2^n], U_i\right)\). Let \(U_i\) be a connected neighborhood of \([((i-1)/2^n, i/2^n], C_i\) such that \(\omega^*(U_i) \subseteq U_i\). Choose dyadic rationals \(0 < m_1/2^m < \cdots < m_2^n/2^m = 1\) such that \(m_i/2^m \in \cap f(U_i) \cap f(U_{i+1})\). We shall now construct a path \(\omega'\), which will send \(C_i\) into \(\omega([m_{i-1}/2^m, m_i/2^m]) \subseteq \omega^*(U_i) \subseteq U_i\).

Let \(\omega = \omega_1 \cdots \omega_2^m\) where the bracketting is canonical. Let \(\omega'_i = \omega_m \cdots \omega_2^m\) where the bracketting is arbitrary. Define \(\omega' = \omega'_1 \cdots \omega'_2^m\) where the bracketting is canonical. Now \(\omega'(C_i) = \omega'_i(I)\).
\[= \omega_{m_{i-1}+1} \cdot \cdots \cdot \omega_{m_i}(I) = \omega(\{m_{i-1}/2^m, m_i/2^m\}) \subseteq U_i; \text{ therefore } \omega' \in N \]

which proves the result. q.e.d.

In the remainder of this paper we shall assume that the structural group \(G \) has the following property:

If \(\omega \in \mathcal{G}', \omega(0) = e \) the identity, then either

1. There exists a sequence \(t_i \) of reals from the unit interval converging to zero and positive integers \(m_i \) such that \((\omega(t_i))^{m_i} \) does not converge to the identity, or

2. There exists a \(t_0 \) such that \(\omega(t) = e \) for \(t \leq t_0 \).

In particular groups with no small subgroups have this property.

Theorem. If \(\tau \) is a transitive lifting function for the bundle \((E, B, p, Y, G) \), then the map \(\tau(\omega) \) depends only on the homotopy class of \(\omega \).

We proceed by a series of lemmas.

Lemma 1. If \(\omega_s(t) \) is a homotopy of the loop \(\omega_1(t) \) at \(b_0 \) to the constant loop \(\omega_0(t) = b_0 \), then there exists a number \(s_0 > 0 \) such that \(\tau(\omega_s) = e \), the identity, for \(s \leq s_0 \).

Proof. \(\tau(\omega_s) \) is a path in \(G \) such that \(\tau(\omega_0) = e \). Since condition (2) is our lemma, it suffices to show that condition (1) is impossible. Let \((t_i, m_i) \) be a sequence of reals and positive integers, as in condition (1). By the transitivity of \(\tau \) we have \((\tau(\omega_{t_i}))^{m_i} = \tau(\omega_{t_i}^{m_i}) \) where \(\omega_{t_i}^{m_i} \) is defined by \(\omega_{t_i+1} = \omega_t \cdot \omega_t \). Since \(t_i \) converges to zero, we have that \(\omega_{t_i}^{m_i} \) converges to the constant path \(\omega_0 \). Since \(\tau \) is continuous, \(\tau(\omega_{t_i}^{m_i}) \) converges to the identity; thus (1) cannot hold. q.e.d.

If \(\omega(t) \) is a path, let \(\omega(t)^{-1} \) denote the path defined by \(\omega(t)^{-1}(t) = \omega(1-t) \).

Lemma 2. \((\tau(\omega))^{-1} = (\tau(\omega^{-1})) \).

Proof. Let \(\omega_s(t) = \omega(st) \). Then \(\omega_s \cdot \omega_s^{-1} \) is a homotopy of a loop to the constant. Let \(s_0 = \sup \{ s \in I | \tau(\omega'_t, \omega_t^{-1}) = e \text{ for } t \leq s \} \). By Lemma 1 \(s_0 > 0 \); we shall show by a contradiction that \(s_0 = 1 \).

If \(s_0 < 1 \), then \(\omega_s \cdot \omega' \) is a reparametrization of \(\omega \) where \(\omega'(t) = \omega(s_0 + (1-s_0)t) \). Consider \(\omega'_s(t) = \omega'(st) \) and \(\tau(\omega'_s, \omega'_s^{-1}) \). Lemma 1 gives us \(s_1 > 0 \) such that \(\tau(\omega'_s \cdot \omega'_s^{-1}) = e \) for \(s < s_1 \). However \(\omega_{s_0} \cdot \omega'_s \) is a reparametrization of \(\omega_{s_0-r-r} \). Thus

\[
\tau(\omega_{s_0+r-r}, \omega_{s_0+r-r})^{-1} = \tau((\omega_{s_0} \cdot \omega'_s) \cdot (\omega_{s_0} \cdot \omega'_s)^{-1})
= \tau(\omega_{s_0}^{-1} \circ \tau(\omega'_s^{-1}) \circ \tau(\omega'_s) \circ \tau(\omega_{s_0}))
= e \text{ the identity for } r \leq s_1.

Hence \(\tau(\omega_s, \omega_s^{-1}) = e \text{ for } s \leq s_0 + s_1 - s_0 s_1 \). Since \(s_0 \) is maximal we have
$s_0 + s_1 - s_0s_1 \leq s_0$ or $1 \leq s_0$ which contradicts $s_0 < 1$. q.e.d.

We are now in a position to prove the theorem. The technique is similar to the proof of Cauchy's theorem. Let Δ denote the model two-simplex and Δ_i^n the ith simplex of the nth barycentric subdivision. Choose loops $\rho_{n,i}$ which are (clockwise) homeomorphisms of the reals modulo 1 onto the boundary of Δ_i^n. By the convexity of Δ define the path $\rho_{x,n,i}(t) = (1-t)x + t\rho_{n,i}(0)$ where $x \in \Delta$. Let $\partial_\pm \Delta_i^n$ denote the loop $\rho_{x,n,i}(\rho_{n,i}^{-1})$.

Proof of Theorem by Contradiction. Let ω be a null homotopic loop such that $\tau(\omega) \neq e$ the identity. Let $\sigma: \Delta \to B$ be a singular simplex such that $\sigma \circ \partial_0 \Delta = \omega$. There must be a simplex Δ_i^0 of the first barycentric subdivision such that $\tau(\sigma \circ \partial_0 \Delta_i^0) \neq e$ for otherwise $\tau(\omega) = e$. We continue by induction and find a nested sequence of simplexes Δ_i^n such that $\tau(\sigma \circ \partial_0 \Delta_i^n) \neq e$. Let $x = \bigcap_{n=0}^{\infty} \Delta_i^n$. Let $\rho_x(t)$ be a homotopy of loops at x such that $\rho_{x,n} = \partial_\pm \Delta_i^n$. Then by Lemma 1 there exists $s_0 > 0$ such that $\tau(\sigma \circ \rho_x) = e$ for $s \leq s_0$; in particular there is some n such that $\tau(\sigma \circ \partial_\pm \Delta_i^n) = e$. But this implies $\tau(\sigma \circ \partial_\pm \Delta_i^n) = e$ which is the desired contradiction. q.e.d.

Theorem. A bundle over a finite polyhedron with a structural group G, which has no small subgroups, has a transitive translation function if and only if it is equivalent in G to an H bundle where H is a totally disconnected subgroup of G.

Proof. Let τ be the translation function that exists by the Hurewicz uniformization theorem for the H bundle. Then since the maps $\tau(\omega_1 \cdot \omega_2)$ and $\tau(\omega_2) \circ \tau(\omega_1)$ are homotopic and H is totally disconnected it follows that they are equal. Hence τ is transitive.

If, on the other hand, there is a transitive translation function τ, we can construct a coordinate bundle with a totally disconnected group. Select a point b_0 in the base space and let $\phi_0(b_0): Y \to p^{-1}(b_0)$ be one of the coordinate maps restricted to $Y \times b_0$. For every vertex a_i select a contraction of its star to the point b_0. Thus for every $x \in \operatorname{St} a_i$ we obtain a path $\omega_{a_i,x}$ from b_0 to x. Define the maps $\phi_{a_i}: Y \times \operatorname{St} a_i \to p^{-1}(\operatorname{St} a_i)$ by $\phi_{a_i}(y, x) = \tau(\phi_0(y), \omega_{a_i,x})$. Thus we obtain coordinate maps which are compatible with the original coordinate maps. The subgroup H of G which is spanned by the $g_{a_i,a_j}(x)$, $x \in \operatorname{St} a_i \cap \operatorname{St} a_j$, is the continuous image of the finitely generated fundamental group of the base space and hence H is totally disconnected. q.e.d.