Corollary 2. If $\phi: H^k(A) \to H^k(\overline{A})$ is an isomorphism for $k \leq n$ and univalent for $k = n+1$, and $\phi: H(H^+(X, A)) \to H(H^+(X, \overline{A}))$ is an isomorphism, then $\phi: H^k(TA) \to H^k(T\overline{A})$ is also an isomorphism for $k \leq n$ and univalent for $k = n+1$.

Reference

University of California, Los Angeles

ONE-PARAMETER TRANSFORMATION GROUPS IN THE PLANE

PAUL S. MOSTERT

Very little is known about the action of a one-parameter group R on two-space except when all orbits are circles, in which case the action is completely known [1]. In a forthcoming paper, A. Beck proves that any closed set can act as the set of fixed points for R. Hence, a very general description appears to be hopeless. However, here, we are able to prove the following result.

Theorem. Let E be the plane and R the real line acting on E as a group of transformations without fixed points (i.e., no point is left fixed by all of R). If E/R is Hausdorff, then E is fibred as a direct product of R and a cross sectioning line. Thus, R is equivalent to a group of translations.

Proof. Let $x \in E$. Since x is not fixed under R, there is a closed interval $[-a, a] = T$ about 0 in R, and an arc $C \subseteq E$, $x \in C$ but not an end point of C, such that $T^2(C)$ is a compact neighborhood of x and the mapping $(t, c) \to t(c)$ is one to one from $T^2 \times C \to T^2(C)$. That is, C is a local cross section to the local orbits of T^2 [1]. We shall show that C is a local cross section for the orbits of R.

Suppose, on the contrary, that for some $z \in C$, there is an $r > a$ such that $r(z) \in T(C)$. Let b be the greatest lower bound of such numbers. Then $b(z) \subseteq -a(C)$, for if not, say $b(z) = t(c)$, $t \in T$, $c \in C$, and $t > -a$, then there is a t', $-a < t' < 0$, such that $t + t' > -a$. Hence $(b + t')(z) = (t + t')(c) \in T(C)$. But $t' < 0$ so that $b + t' < b$. By the choice of b, this implies $b + t' < a$. Since this implies $b + t'' < a$ for

Presented to the Society, April 19, 1957; received by the editors December 21, 1956.
that \(t' \leq t < 0, b = a \). That is, for some \(t, 0 < t < a \), \((b + t)(z) \in T(c)\). But this contradicts the fact that \(T^2(C) \) is homeomorphic to \(T^2 \times C \). Thus \(b > a \), and \(b(z) \in -a(C) \).

Suppose \(b(z) = -a(z) \). Then \([-a, b](z) = R(z) \) is a circle bounding a pre-compact region \(A \) by the Jordan curve theorem. Hence, if \(z \in A, R(z) \subset A \) since orbits cannot intersect. Then, for any \(r \in R, r(A^-) \subset A^- \). Thus \(r \) has a fixed point. For each \(n \), let \(x_n \) be a fixed point for \(1/2^n \). Let \(y \) be a limit point of the \(x_n \)'s. Thus \(R(y) = y \), contradicting our hypothesis that \(R \) acts without fixed points.

Now we may assume \(b(z) \neq -a(z) \). Let \([b(z), -a(z)] = -a[(a + b)(z), z] \) denote the arc of \(-a(C)\) joining \(b(z) \) to \(-a(z)\). Then \([-a, b](z) \cup [b(z), -a(z)] \) is a simple closed curve in \(E \), and thus divides \(E \) into two parts \(A \) and \(B \) one of which is pre-compact. Moreover, if \(R_+ = (0, \infty), R_- = (-\infty, 0), R_+(b(z)) \) is contained in one, say it is \(A \), while \(R_-(a(z)) \) is contained in the other, for \(R_+(b(z)) \) cannot leave \(A \) except by crossing \([b(z), -a(z)] \) since an orbit cannot cross itself. But \(R_+(b(z)) \) cannot leave \(T(C) \) except by crossing \(a(C) \). A similar argument establishes that \(R_-(a(z)) \subset B \). Moreover, if \(z \in A \), and \(r > 0 \), then \(r(z) \in A \) since again \(R(z) \) cannot cross \([-a, b](z) \), and cannot leave \(T(C) \) through \(-a(C)\). Hence, for \(r > 0, r(A^-) \subset A^- \). But \(A^- \) is a closed two-cell since it is bounded by a simple closed curve. Thus \(r \) has a fixed point. Again find \(x_n \in A^- \) such that \(1/2^n(x_n) = x_n \). If \(y \) is a limit point of \(x_n \)'s, then \(R(y) = y \), a contradiction.

This proves that \(C \) meets \(R(x) \) in exactly one point for each \(x \in T(C) \). Thus, \(C \) is a local cross section for all of \(R \). Since we can find a local cross section for each point of \(E \), and since \(E/R \) is Hausdorff, \(E \) is a fibre bundle over \(E/R \) with fibre \(R \) and base space a connected one-dimensional manifold. Since \(E \) is a principal fibre bundle over \(E/R \), and \(R \) is the line, there is a cross section \(L \) of \(E/R \) in \(E \) such that the natural mapping \(E \times R \to R(E) \) is a homeomorphism onto \(E \) \([2]\). Clearly \(L \) must be a line.

Bibliography

Tulane University