A NOTE ON THE GAUSS-GREEN THEOREM

HERBERT FEDERER

A very general measure-theoretic version of the Gauss-Green formula (for n-space) has recently been studied by De Giorgi in [DG 1] and [DG 2]. Independently Fleming and Young have obtained related results (for 3-space) in [FY], employing the technique of “generalized surfaces.” Here the work of De Giorgi will be supplemented through use of the geometric concept of exterior normal introduced in [F 1].

Assuming that A is a subset of Euclidean n-space E_n, measurable with respect to Lebesgue measure L_n, consider the following two conditions:

1. There exist finite real valued (signed) Borel measures Φ_1, \cdots, Φ_n over E_n such that

$$\int_A D_ifdL_n = \int_{E_n} f d\Phi_i \quad \text{for } i = 1, \cdots, n$$

whenever f is a continuously differentiable function on E_n which vanishes at infinity. [In the Schwartz language of distributions this means that the partial derivatives of the characteristic function of A are the measures $-\Phi_1, \cdots, -\Phi_n$.]

2. There exists a number M and an infinite sequence of sets A_j with polyhedral (or smooth) boundaries B_j such that

$$L_n[(A - A_j) \cup (A_j - A)] \to 0 \text{ as } j \to \infty$$

and

$$H^{n-1}_n(B_j) \leq M \text{ for all positive integers } j,$$

where H^{n-1}_n is $n-1$ dimensional Hausdorff measure over E_n.

De Giorgi proved in [DG 1] that the conditions (1) and (2) are equivalent. He also showed that the total variation over E_n of the vector-valued measure Φ defined by Φ_1, \cdots, Φ_n in (1) is equal to the infimum of all numbers M suitable for (2). In his subsequent paper [DG 2], he established various interesting local properties of Φ, which will be used and extended presently.

Say, as in [F 1], that a unit vector u is an exterior normal of A at x if and only if

Presented to the Society, October 26, 1957; received by the editors October 25, 1957.

1 This work was supported in part by a Sloan Fellowship.
\(r^{-n}L_n(\{y \mid |y - x| < r, (y - x) \cdot u < 0, y \in A\}) \rightarrow 0 \)

and

\(r^{-n}L_n(\{y \mid |y - x| < r, (y - x) \cdot u > 0, y \in A\}) \rightarrow 0 \)
as \(r \to 0^+ \), where \(\cdot \) is the inner product. Such a unit vector \(u \), if it exists, is uniquely determined by \(A \) and \(x \), and denoted \(\nu(A, x) \). In case no such \(u \) exists, \(\nu(A, x) \) is the null vector. This defines for each \(x \in E_n \) a vector \(\nu(A, x) \) with components \(\nu_1(A, x), \ldots, \nu_n(A, x) \).

It will be shown that (1) and (2) are equivalent to the condition:

\[
(3) \quad H_n^{n-1}(\{x \mid \nu(A, x) = 1\}) < \infty
\]

and

\[
\int_A D_i f dL_n = \int_{E_n} f(x)\nu_i(A, x) dH_n^{n-1} x \quad \text{for } i = 1, \ldots, n,
\]

whenever \(f \) is a continuously differentiable function on \(E_n \) which vanishes at infinity.

Obviously (3) implies (1) with

\[
\Phi_i(S) = \int_S \nu_i(A, x) dH_n^{n-1} x
\]

whenver \(S \) is a Borel set contained in \(E_n \).

The fact that (1) implies (3) will be established with the help of the following lemma:

If (1) holds and if \(|\nu(A, x)| = 1 \), then

\[
\limsup_{r \to 0^+} r^{-n+1} \left\| \Phi[K(x, r)] \right\| \geq \frac{\alpha(n)}{4},
\]

where \(K(x, r) = \{y \mid |y - x| < r\} \) and \(\alpha(n) = L_n[K(x, 1)] \).

In the proof of this lemma one may assume, to simplify the notation, that \(x \) is the origin and \(\nu(A, x) \) is the \(n \)th base vector \((0, \ldots, 0, 1)\). According to \([DG 2, \text{Lemma III}]\) it is true for \(L_1 \) almost all positive numbers \(r \) that

\[
\int_{A \cap K(x, r)} D_n f dL_n = \int_{K(x, r)} f d\Phi_n + \int_A f(y)\nu_n[K(x, r), y] dH_n^{n-1} y
\]

whenever \(f \) is a continuously differentiable function on \(E_n \) which vanishes at infinity. Moreover, since \(A \cap K(x, r) \) is bounded, vanishing at infinity is irrelevant; and continuously differentiable may be generalized to Lipschitzian, by smoothing. In particular the formula applies with
\[f(y) = y_n + \left| r^2 - \sum_{i=1}^{n-1} (y_i)^2 \right|^{1/2} \quad \text{for } y \in E_n. \]

Consider the hemispherical shells
\[V(r) = \{ y \mid |y| = r \text{ and } y_n \leq 0 \}, \]
\[W(r) = \{ y \mid |y| = r \text{ and } y_n > 0 \}, \]
and note that
\[f(y) = 0 \text{ for } y \in V(r), \quad |f(y)| \leq 2r \text{ for } y \in K(x, r), \]
\[L_n[A \cap \{ y \mid |y| < s \text{ and } y_n > 0 \}] = \int_0^s H_n^{n-1}[A \cap W(r)]dr \quad \text{for } s > 0. \]

Now let \(\epsilon > 0 \). Inasmuch as
\[L_n[A \cap \{ y \mid |y| < s \text{ and } y_n > 0 \}] \leq \epsilon \frac{s^n}{n} = \int_0^s \epsilon r^{n-1}dr \]
for small \(s > 0 \), there exist arbitrarily small \(r > 0 \) for which
\[H_n^{n-1}[A \cap W(r)] \leq \epsilon r^{n-1}, \]
which are unexceptional with respect to [DG 2, Lemma III], and for which
\[L_n[A \cap K(x, r)] \geq \frac{r^n}{2} [\alpha(n) - \epsilon]. \]

For such \(r \) it follows that
\[\int_{A \cap K(x, r)} D_n f dL_n = L_n[A \cap K(x, r)] \geq \frac{r^n}{2} [\alpha(n) - \epsilon], \]
\[\int_{K(x, r)} f d\Phi_n \leq 2r \left| \Phi_n[K(x, r)] \right| \leq 2r \left| \Phi[K(x, r)] \right|, \]
\[\int_A f(y) \nu_n[K(x, r), y]dH_n^{n-1}y \leq 2r H_n^{n-1}[A \cap W(r)] \leq 2\epsilon r^n, \]
hence
\[r^{-n+1} \left| \Phi[K(x, r)] \right| \geq \frac{1}{4} [\alpha(n) - \epsilon] - \epsilon = \frac{1}{4} [\alpha(n) - 5\epsilon]. \]

Now suppose (1) holds and let \(\mu \) be the total variation measure associated with the vector valued measure \(\Phi \). The preceding lemma implies that the \(n-1 \) dimensional \(\mu \) density of \(E_n \) is no less than
\(\alpha(n)/[4\alpha(n-1)] \) at each point of the set

\[N = \{ x \mid v(A, x) = 1 \}. \]

If \(S \) is any Borel set contained in \(N \), then \(\mu(E_n - S) < \infty \), and it follows from \([F \, 3, \, 3.3 \, \text{and} \, 3.1]\), that

\[H_n^{n-1}(S) \leq \frac{\alpha(n)}{4\alpha(n - 1)} \mu(S). \]

Furthermore De Giorgi established in \([DG \, 2, \, \text{Theorems} \, \text{III} \, \text{and} \, \text{IV}]\) the existence of a Borel set \(F \) such that

\[\mu(E_n - F) = 0, \quad F \subset N \]

and

\[\mu(S) = H_n^{n-1}(S), \quad \Phi_i(S) = \int_S v_i(A, x) dH_n^{n-1} x \quad \text{for} \quad i = 1, \cdots, n \]

whenever \(S \) is any Borel set contained in \(F \). Inasmuch as

\[H_n^{n-1}(N - F) \leq \frac{\alpha(n)}{4\alpha(n - 1)} \mu(N - F) = 0, \]

it follows that if \(S \) is any Borel set contained in \(E_n \), then

\[\Phi_i(S) = \Phi_i(S \cap F) = \int_{S \cap F} v_i(A, x) dH_n^{n-1} x = \int_{S \cap N} v_i(A, x) dH_n^{n-1} x = \int_S v_i(A, x) dH_n^{n-1} x \]

for \(i = 1, \cdots, n \). Accordingly (3) is a consequence of (1).

In the special case when \(H_n^{n-1}(\text{Boundary } A) < \infty \), the condition (2) is obviously satisfied. Therefore (3) holds in this case, as shown by quite different methods in \([F \, 1], \,[F \, 2], \,[F \, 3]\).

Another special case, which includes the preceding one, occurs when the \(n-1 \) dimensional integralgeometric measure of the boundary of \(A \) is finite. Here the validity of (1) may be derived from known characterizations \([F \, 4], [K]\) of distributions whose partial derivatives are measures.

Finally consider a region \(A \) whose boundary \(B \) is a finitely triangulable \(n-1 \) dimensional manifold. In case \(n = 2 \) the condition (1) holds if and only if the simple closed curve \(B \) has finite length. For \(n \geq 3 \) the situation is much more complicated. If the inclusion map \(b \) of \(B \) into \(E_n \) has finite \(n-1 \) dimensional Lebesgue area and if \(L_n(B) \)
=0, then (1) holds. It would be interesting to know whether (1) implies that the Lebesgue area of \(b \) is finite.

References

DG 2. ———, *Nuovi teoremi relativi alle misure \(r-1 \) dimensionali in uno spazio ad \(r \) dimensioni*, Ricerche di Matematica vol. 4 (1955) p. 95.

Brown University and

The Institute for Advanced Study