A note on the Gauss-Green theorem
HTML articles powered by AMS MathViewer
- by Herbert Federer
- Proc. Amer. Math. Soc. 9 (1958), 447-451
- DOI: https://doi.org/10.1090/S0002-9939-1958-0095245-2
- PDF | Request permission
References
- E. De Giorgi, Su una teoria generale delta misura $r - 1$ dimensionale in un spazio ad $r$ dimensioni, Annali di Matematica Ser. 4 vol. 36 (1954) p. 191.
—, Nuovi teoremi relativi alle misure $r - 1$ dimensionali in uno spazio ad $r$ dimensioni, Ricerche di Matematica vol. 4 (1955) p. 95.
- Herbert Federer, The Gauss-Green theorem, Trans. Amer. Math. Soc. 58 (1945), 44–76. MR 13786, DOI 10.1090/S0002-9947-1945-0013786-6
- Herbert Federer, Coincidence functions and their integrals, Trans. Amer. Math. Soc. 59 (1946), 441–466. MR 15466, DOI 10.1090/S0002-9947-1946-0015466-0 —, The $(\phi ,k)$ rectifiable subsets of $n$ space, Trans. Amer. Math. Soc. vol. 62 (1947) p. 114. —, An analytic characterization of distributions whose partial derivatives are representable by measures, Bull. Amer. Math. Soc. Abstract 60-4-407 (1954).
- W. H. Fleming and L. C. Young, Representations of generalized surfaces as mixtures, Rend. Circ. Mat. Palermo (2) 5 (1956), 117–144. MR 82144, DOI 10.1007/BF02854351 K. Krickeberg, Distributions and Lebesgue area, Bull. Amer. Math. Soc. Abstract 63-4-437 (1957).
Bibliographic Information
- © Copyright 1958 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 9 (1958), 447-451
- MSC: Primary 28.00
- DOI: https://doi.org/10.1090/S0002-9939-1958-0095245-2
- MathSciNet review: 0095245