ON THE GROUP OF AFFINITIES OF LOCALLY AFFINE SPACES

LOUIS AUSLANDER

Let M be a compact manifold with a given complete flat affine connection (i.e., an affine connection with curvature and torsion zero). Then we may represent the fundamental group Γ of M by affine transformations of the real affine space \mathbb{R}^n, in such a way that the orbit space of \mathbb{R}^n by Γ is homeomorphic to M. We will denote the full group of affine transformations of \mathbb{R}^n by $A(n)$ and the orbit space of \mathbb{R}^n under Γ by \mathbb{R}^n/Γ. We represent the elements of $A(n)$ as matrices of the form

$$\begin{pmatrix} A & v \\ 0 & 1 \end{pmatrix}$$

where A is the (nonsingular) linear transformation part and v is the translational part. Let G be the group of all affinities of M, i.e., the group of all homeomorphisms of M onto itself which preserve the given affine structure on M. Nomizu proved in [3] that G is a Lie group. Let G_1 denote the identity component of G. It is the purpose of this note to prove that G_1 is a nilpotent Lie group.

Now it is well known that any map of M into itself can be lifted to a map of \mathbb{R}^n into itself, uniquely up to covering transformations, i.e., up to elements of Γ. The maps in G_1 lift to affine transformations of \mathbb{R}^n. It is clear that G^*, the identity component of the subgroup of $A(n)$ so obtained, projects back onto G_1 as a covering group. Further, since $g^*Tg^{-1}=\Gamma$, for all $g^*\in G^*$ and since G^* is connected and Γ discrete, it follows easily that G^* and Γ commute elementwise.

Received by the Editors January 4, 1957.

This paper was written while the author was a National Science Foundation Post Doctoral Fellow.
Lemma 1. There exist $\gamma_i \in \Gamma$, $i = 1, \cdots, n$, whose translational components are linearly independent.

Proof. Assume the lemma is false and all translational components lie in a linear subspace $V \subset \mathbb{R}^n$. Then V must be invariant by Γ that is, we have $\gamma(V) \subset V$ for all $\gamma \in \Gamma$. In \mathbb{R}^n choose a compact fundamental domain D for \mathbb{R}^n/Γ. Then $V \cap D$ is compact and a fundamental domain for Γ restricted to V. Hence V/Γ must be a compact manifold of dimension less than n with fundamental group Γ. Using the theorem of Eilenberg-MacLane on groups operating on acyclic spaces [2], we see that the n dimensional cohomology group of the group Γ with coefficients integers modulo 2, must be zero. But this contradicts the fact that Γ is also the fundamental group of an n dimensional manifold with \mathbb{R}^n as universal covering space.

Lemma 2. Let $g^* \in G^*$ be such that $g^*(x_0) = x_0$ for some $x_0 \in \mathbb{R}^n$. Then g^* is the identity element of G^*.

Proof. Let $g^*(x_0) = x_0$. Choose x_0 as the origin of the coordinate system. Now $g^*g(x_0) = y(x_0)$. Hence g^* leaves the images of x_0 under Γ point-wise fixed. Since the points $\gamma(x_0), \gamma \in \Gamma$ span \mathbb{R}^n by Lemma 1, g^* is the identity element of G^*.

Theorem. Let M be a complete compact flat affine space. Let G be its group of affinities. Then the identity component of G is a nilpotent Lie group.

This is equivalent to proving that G^* is a nilpotent Lie group. Now $G^* \subset A(n)$. Let \mathbb{C}^n denote the n-dimensional affine space over the complex field; the corresponding group of affine transformations will be denoted by $A(n, \mathbb{C})$. Then $A(n)$ may be considered as a subgroup of $A(n, \mathbb{C})$. Since $g^* \in G^*$ operates without fixed points in \mathbb{R}^n, it will do so also in \mathbb{C}^n. Further $\gamma g^* = g^*\gamma$.

Let $\exp(Mt)$ be a one parameter subgroup of G^* with infinitesimal generator M. The matrix M can be assumed in normal form

\[
\begin{pmatrix}
M_1 & 0 & v_1 \\
.M_2 & . & . \\
0 & . & . \\
0 & . & M_k \\
0 & v_k
\end{pmatrix}
\]

where each M_i is triangular with all eigenvalues equal.

Lemma 3. All eigenvalues of M are 0; i.e., M is nilpotent.
Proof. By changing the origin, if necessary, we can assume that the translational part v_i is 0 for every M_i with eigenvalue different from 0. At least one eigenvalue must be 0, otherwise the elements $\exp(Mt)$ would have the origin as fixed point; this would contradict Lemma 2. Because M has the above special form, it is easy to see that the coordinates of the points on the orbit of the origin under $\exp(Mt)$ are given by polynomials in t. Suppose that there is an M_i with eigenvalue not zero. Let y be any point with a nonzero coordinate corresponding to the element in position $(1, 1)$ of M_i. But then on the orbit of y under $\exp(Mt)$ this coordinate has the form $C \cdot \exp(\lambda t)$, with $C \neq 0$. Applying Lemma 1, one sees that there exists a $\gamma \in \Gamma$ such that for the orbit of $\gamma(0)$ at least one coordinate is of exponential form. But because $g^*(\gamma(0)) = \gamma(g^*(0))$ and the remark on the orbit of 0 above, the coordinates on the orbit of $\gamma(0)$ must be polynomials. This proves Lemma 3.

Our theorem is now an immediate consequence of the well-known fact that a linear Lie algebra, all of whose elements are nilpotent, is nilpotent [4].

Bibliography

The Institute for Advanced Study and
Indiana University