Let X be a Hilbert space (any dimensionality, real or complex scalars). Let P be a hermitian projection. Let A be any hermitian operator. The compression of A to PX is \(PAP \), considered as an operator on PX. Compressions of completely continuous positive operators are of interest in connection with estimating eigenvalues: the Fischer-Courant minimax theorem [5, p. 235] says the kth highest eigenvalue of \(PAP \) is not greater than that of A. Compressions enter in the study of more general mappings of operators, often via Naimark’s theorem [6].

Especially in the first connection, the case where PX is finite-dimensional is interesting. But in some problems a finite-dimensional subspace may be known, not via the operator P, but via an arbitrary set of vectors which span it; if they are not orthonormal, one would rather not have to find P. This suggests that the following elementary formulas may be worth pointing out. I suppose that at least Formula 1 must be known already, but not, apparently, very widely.

Notation. \(x_1, \ldots, x_n \) form a linear basis of PX. \(G \) denotes the determinant of their Gramian (an \(n \times n \) matrix with \(i, j \) entry \((x_i, x_j)\)). If the \(k \)th row of the Gramian is replaced by \((z, x_1), \ldots, (z, x_n)\), all other rows being left unchanged, the determinant of the resulting matrix will be denoted \(G(x_k; z) \).

Evident properties: \(G(x_k; z) = 0 \) if \(z = (1-P)z \) or \(z = x_i \) \((i \neq k)\), while \(G(x_k; x_k) = G \); also \(G(x_k; z) \) is linear in \(z \). These may be summed up by saying that \(G(x_k; z) = (z, x_k^*)G \), where \(\{x_1^*, \ldots, x_n^*\} \) is the basis of PX biorthonormal with \(\{x_1, \ldots, x_n\} \).

Formula 1. \(Pz = G^{-1}\sum_k G(x_k; z)x_k \). (This notation here and below means summation over all available values of the index.)

Proof. Uniquely \(z = \sum_i a_i x_i + (1-P)z \). Substitute this on both sides, and use the evident properties of \(G(x_k; z) \).

Formula 2. \(\text{tr}(PAP) = G^{-1}\sum_k G(x_k; A x_k) \).

Proof. Let \(\xi_1, \ldots, \xi_n \) be orthonormal eigenvectors of \(PAP \), and \(\lambda_1, \ldots, \lambda_n \) their respective eigenvalues; then \(x_i = \sum_{\rho} T_{i\rho} \xi_{\rho} \), where \(T \) is some nonsingular matrix. Recall that
\[
(x_i, x_j) = \sum_{\rho \sigma} T_{i\rho} \overline{T_{j\sigma}} (\xi_{\rho}, \xi_{\sigma}) = \sum_{\rho} T_{i\rho} \overline{T_{j\rho}} = (TT^*)_{ij}
\]
gives $G = |\det T|^2$. (* denotes conjugate transpose.) It remains to prove that, analogously, $\sum_k G(x_k; Ax_k) = |\det T|^2 \text{tr}(PAP)$. Now $(Ax_i, x_j) = (PAPx_i, x_j) = \sum_p T_{ip} \lambda_p T_{jp}$. So if we let R^k denote the matrix with entries $R^k_{ip} = T_{ip} (i \neq k)$ and $R^k_{kp} = T_{kp} \lambda_p$, we have $G(x_k; Ax_k) = \det(R^k T^*)$, $\sum_k G(x_k; Ax_k) = \det T^* \sum_k \det R^k$. In the expansion

$$\sum_k \det R^k = \sum_k \sum_{p_1, \ldots, p_n} T_{1p_1} \cdots T_{np_n} \lambda_{p_k}$$

the summation over k may be carried out first: $\sum_k \lambda_{p_k} = \text{tr}(PAP)$ for any (p_1, \ldots, p_n) giving a nonzero contribution. This gives the result.

The proof would have been simpler if I had exploited the evident properties of $G(x_k; z)$. I gave this version because Formula 3 is proved altogether analogously, without introducing any new notions.

Instead of the trace c_1, consider now c_v, where for any B

$$\det (\lambda + B) = \sum_v c_v(B)\lambda^{n-v};$$

that is, c_v is the vth elementary symmetric polynomial of the eigenvalues. Extend the notation: $G(x_{k_1}; z_1)(x_{k_2}; z_2)$ is the determinant of the matrix which differs from the Gramian in having k_1th row $(z_1, x_1), \ldots, (z_1, x_n)$ and in having k_2th row $(z_2, x_1), \ldots, (z_2, x_n)$; and so forth.

Formula 3. $c_v(PAP) = G^{-1} \sum G(x_{k_1}; Ax_{k_1}) \cdots (x_{k_v}; Ax_{k_v})$. (In this equation summation is over all distinct v-tuples $\{k_1, \ldots, k_v\}$ from among $\{1, \ldots, n\}$.)

Proof. See under Formula 2.

An interesting case is where A is another projection Q. A complete set of unitary-invariants for the pair of subspaces $P\mathcal{C}$ and $Q\mathcal{C}$ is the spectrum of PQP and its multiplicity function (together with the dimensionalities of $Q\mathcal{C} \cap (1-P)\mathcal{C}$ and $(1-Q)\mathcal{C} \cap (1-P)\mathcal{C}$) [1;2]. For a simple numerical measure of the closeness of $P\mathcal{C}$ to being contained in $Q\mathcal{C}$, $\text{tr}(PQP)$ recommends itself (or, if you like, $n^{-1} \text{tr}(PQP)$). If $Q\mathcal{C}$ is finite-dimensional, one may ask for a modification of Formula 2 which treats P and Q symmetrically.

y_1, \ldots, y_m form a linear basis of $Q\mathcal{C}$. H denotes the determinant of their Gramian; $H(y_1; z)$, etc. are defined in analogy to previous notations.

Formula 4. $\text{tr}(PQP) = \text{tr}(QPQ) = (GH)^{-1} \sum k_1 G(x_k; y_1) H(y_1; x_k)$.

2 The case $v=n$ shows the equivalence of Theorem 1 of [4] to Weyl's theorem which it generalizes.

3 One might prefer replacing PQP by $PQP + (1-P)(1-Q)(1-P) = 1-P-Q+QP +QP$, making apparent the symmetrical roles of P and Q [1].

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. I have proofs of Formulas 4 and 5 along the unsophisticated lines followed above for Formulas 2 and 3, but they are clumsy. Instead, rewrite the right side of Formula 4 in terms of the biorthonormal bases \(\{x_1, \ldots, x_n\}, \{x_1^*, \ldots, x_n^*\} \) of \(P\mathcal{C}, \{y_1, \ldots, y_m\}, \{y_1^*, \ldots, y_m^*\} \) of \(Q\mathcal{C} \). It equals

\[
\sum_{kl} (y_l, x_k^*)(x_k, y_l^*) = \sum_{kl} ((x_k, y_l^*)y_l, x_k^*) = \sum_k (Qx_k, x_k^*) = \text{tr}(PQP),
\]

by Formulas 1 and 2.

Formula 5.

\[
c_v(PQP) = c_v(QPQ)
\]

\[
= (GH)^{-1} \sum G(x_{k_1}; y_{l_1}) \cdots (x_{k_{\nu}}; y_{l_{\nu}})H(y_{l_1}; x_{k_1}) \cdots (y_{l_{\nu}}; x_{k_{\nu}}).
\]

(In this equation summation is over all distinct pairs of \(\nu \)-tuples, \(\{k_1, \ldots, k_{\nu}\} \) from among \(\{1, \ldots, n\} \) and \(\{l_1, \ldots, l_{\nu}\} \) from among \(\{1, \ldots, m\} \).

Proof. The equation

\[
G(x_{k_1}; z_1) \cdots (x_{k_{\nu}}; z_{\nu}) = G_{\nu}(z_1 \otimes \cdots \otimes z_{\nu}, G_{k_1}^* \cdots k_{\nu})
\]

defines an element \(G_{k_1}^* \cdots k_{\nu} \) of \(\mathcal{C}^\nu \), the tensor product of \(\nu \) copies of \(\mathcal{C} \). Extend \(\{x_1, \ldots, x_n\} \) to a basis of \(\mathcal{C} \) by adjoining an orthonormal basis \(\{x_{n+1}, x_{n+2}, \ldots\} \) of \((1-P)\mathcal{C} \). The elements \(x_{\nu_1} \otimes \cdots \otimes x_{\nu_\nu} \) form a linear basis of \(\mathcal{C}^\nu \). By considering its scalar products with these basis vectors, \(G_{k_1}^* \cdots k_{\nu} \) is identified as

\[
\frac{1}{\nu!} \sum_{l_1 \cdots l_{\nu}} \epsilon_{l_1 \cdots l_{\nu}} x_{l_1}^* \otimes \cdots \otimes x_{l_{\nu}}^* = x_{[k_1} \otimes \cdots \otimes x_{k_{\nu}]}^*.
\]

(Again \(\epsilon \) is defined by \(\epsilon = \pm 1 \) if \((l_1, \ldots, l_{\nu}) \) is respectively an even or an odd permutation of \((k_1, \ldots, k_{\nu}) \), \(\epsilon = 0 \) otherwise. The bracket on the subscripts, denoting antisymmetrization, is defined by the equation.)

The easily-proved analog of Formula 1 is

\[
Pz_{[1} \otimes \cdots \otimes Pz_{\nu]} = \sum_{k_1 \cdots k_{\nu}} (z_1 \otimes \cdots \otimes z_{\nu}, x_{[k_1}^* \otimes \cdots \otimes x_{k_{\nu}]}^*)x_{k_1} \otimes \cdots \otimes x_{k_{\nu}}.
\]

Formula 3 in the new notation reads

\[
c_v(PAP) = \sum_{k_1 \cdots k_{\nu}} (Ax_{k_1} \otimes \cdots \otimes Ax_{k_{\nu}}, x_{[k_1}^* \otimes \cdots \otimes x_{k_{\nu}]}^*);
\]
this is not disturbed if the subscripts of the $Ax_{k_{i}}$ are also bracketed.

The right side of Formula 5 becomes

$$\sum_{k_{1}\cdots k_{v}, l_{1}\cdots l_{v}} (y_{l_{1}} \otimes \cdots \otimes y_{l_{v}}, x_{[k_{1} \otimes \cdots \otimes x_{k_{v}}]} (x_{k_{1}} \otimes \cdots \otimes x_{k_{v}}, y_{[l_{1} \otimes \cdots \otimes y_{l_{v}}]}).$$

By the analog of Formula 1 this is equal to

$$\sum_{k_{1}\cdots k_{v}} (Qx_{[k_{1} \otimes \cdots \otimes x_{k_{v}}]}, x_{[k_{1} \otimes \cdots \otimes x_{k_{v}}]},$$

and by Formula 3 this is $c_{r}(PQP)$, as claimed.

The analogy to the special case, Formula 4, could be strengthened by mentioning that $Pz_{[i \otimes \cdots \otimes Pz_{v}]} = P_{r}(z_{1} \otimes \cdots \otimes z_{v})$, where P_{r} is the hermitian projection on the subspace of \mathfrak{X} linearly spanned by antisymmetrized products of elements of $P\mathfrak{X}$. The $x_{[k_{1} \otimes \cdots \otimes x_{k_{v}}]}$ and the $x_{[k_{1} \otimes \cdots \otimes x_{k_{v}}]}$ are almost biorthonormal bases of $P_{r}\mathfrak{X}$:

$$(x_{[l_{1} \otimes \cdots \otimes x_{l_{v}}]}, x_{[k_{1} \otimes \cdots \otimes x_{k_{v}}]}^{*}) = \frac{1}{v!} \delta_{k_{1}\cdots k_{v}}.$$