ANOTHER SUBDIVISION WHICH CAN NOT BE SHELLED

CHANDLER DAVIS

1. Introduction. Let B be a 3-cell, and consider a subdivision of B into 3-cells B_1, \cdots, B_k. Let K_i denote the union of the B_j other than B_i. I will say that the subdivision can not be shelled in case, for each i, K_i is not a 3-cell. Several examples of such subdivisions have been constructed, see [3]; the most remarkable is M. E. Rudin's [1], in which B and all the B_i are tetrahedra (k is 41). The example given here is quite simple, and the value of k is obviously minimal! However, it is not a simplicial decomposition.

Theorem 1. There exists a subdivision of the 3-cell into three pieces which can not be shelled.

2. The example. Introduce Cartesian coordinates x_1, x_2, x_3. Let B be $x_1^2 + x_2^2 + x_3^2 \leq M^2$, where M is a sufficiently large positive number. Let T_i be the line $x_{i+1} = 1, x_{i+2} = -1$; these subscripts are modulo 3. Let B_i consist of those points p of B such that

$$d(p, T_i) = \min_{j=1,2,3} d(p, T_j).$$

(Here $d(\cdot, \cdot)$ is Euclidean distance between closed sets.)

B_1 is a 3-cell by the following argument. It is permissible to ignore the small caps where $x_1^2 \geq M^2 - 1$. Consider any other cross-section of B_1 by a plane $x_1 = \text{constant}$. It is star-shaped about the point where T_1 cuts it; for going from $p = (x_1, x_2, x_3) \in B_1$ to $p_\lambda = (x_1, 1 + \lambda(x_2 - 1), -1 + \lambda(x_3 + 1))$ with $0 \leq \lambda < 1$ reduces the distance to T_1 by $d(p, p_\lambda)$ and can not reduce the distance to T_2 or T_3 by more. It contains a centered disk, namely $(x_2 - 1)^2 + (x_3 + 1)^2 \leq 1$. It is closed. This gives an obvious method for deforming B_1 onto a cylinder.

$K_1 = B_2 \cup B_3$ is not a cell, for its fundamental group does not vanish. Namely, consider $x_1 = 0, x_2^2 + x_3^2 = M^2$. If p is on this circle, $d(p, T_1) \geq M - 2^{1/2}$, while at least one of $d(p, T_2)$ and $d(p, T_3)$ is $\leq (M^2/2 + 1)^{1/2}$. Since M is large, $p \in K_1$. This circle is not contractible in K_1, for K_1 has no points in $(x_2 - 1)^2 + (x_3 + 1)^2 < 1$.

Because of the evident symmetry between the B_i, this proves Theorem 1.

3. Generalization.

Theorem 2. For $k \geq 3$ there exists a subdivision of the 3-cell into k pieces which can not be shelled.
This result, which was proposed by O. G. Harrold, is clearly a consequence of the 3-dimensional case of the following theorem. (If the conclusion of Theorem 3 was simply that the subdivision could not be shelled, it could conversely be deduced from Theorem 2.)

Theorem 3. For \(k \geq n \geq 3 \) there exists a subdivision of the \(n \)-cell into \(k \) pieces such that the union of any \(k - 1 \) of the pieces has nontrivial \(n - 2 \)th homotopy group.

The idea of the construction is the same as for Theorem 1. Choose \(k \) vectors, the first \(n \) of which are the coordinate unit vectors, and no \(n \) of which are linearly dependent. Choose any nonintersecting lines \(T_1, \ldots, T_k \) in these respective directions, such that each \(d(T_i, T_j) \) is at least 2. There exists \(D > 0 \) such that each \(T_i \) passes within \(D \) of the origin. Imitate the definitions above of \(M, B \) and the \(B_i \). The proof that \(B_i \) is a cell is not much affected.

The conclusion of the theorem concerns \(\pi_{n-2}(K_i) \). We may choose Cartesian coordinates \(y_1, \ldots, y_n \) such that \(T_i \) is the \(y_1 \)-axis, and such that the \(n - 2 \)-sphere

\[
y_1 = 0, \ y_2 + \cdots + y_n^2 = (M - D)^2
\]

lies in \(B \). Then this sphere lies in \(K_i \). (This is proved separately for \(i \leq n \) and \(i > n \).) It is not contractible in \(K_i \), for \(K_i \) has no points in \(y_2^2 + \cdots + y_n^2 < 1 \).

4. **Another version of the example.** Let \(C_{1i} \) (for \(i = 1, 2, 3 \)) be the set of points with cylindrical coordinates

\[
0 \leq z \leq 1, \quad 0 \leq r \leq 1,
\]

\[
\frac{2\pi}{3} (i - 1) \leq \theta - \frac{\pi}{2} r \leq \frac{2\pi}{i}.
\]

Similarly define \(C_{2i} \) by

\[
1 \leq z \leq 2, \quad 0 \leq r \leq 1,
\]

\[
\frac{2\pi}{3} (i - 1) \leq \theta + \frac{\pi}{2} r \leq \frac{2\pi}{i}.
\]

Now if \(B_i = C_{1i} \cup C_{2i} \) and \(B = B_1 \cup B_2 \cup B_3 \), a figure is obtained which is homeomorphic to the one so labeled in §2. The two versions yield Theorem 1 equally easily, but this one leads to a different generalization.
Theorem 4. For any \(v = 1, 2, 3, \ldots \), there exists a subdivision of the 3-cell into three pieces such that omitting any of the pieces leaves a set whose fundamental group is the free group on \(v \) generators.

In fact, define \(C_{2^{\mu}+1, i} \) as the result of translating \(C_{1i} \) along the \(z \)-axis a distance \(2\mu \); \(C_{2^{\mu+2}, i} \) similarly in terms of \(C_{2i} \). If \(B_i = C_{1i} \cup \cdots \cup C_{r+1, i} \) and \(B = B_1 \cup B_2 \cup B_3 \), the resulting figure may be shown to provide the example for Theorem 4.

I thank several colleagues, and especially R. H. Bing, for valuable conversations.

Bibliography

Institute for Advanced Study