A report on primes of the form and on factors of Fermat numbers
Author:
Raphael M. Robinson
Journal:
Proc. Amer. Math. Soc. 9 (1958), 673-681
MSC:
Primary 10.00; Secondary 68.00
DOI:
https://doi.org/10.1090/S0002-9939-1958-0096614-7
Erratum:
Proc. Amer. Math. Soc. 9 (1958), 1000-1000.
MathSciNet review:
0096614
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] A. J. C. Cunningham, Quadratic and linear tables, London, F. Hodgson, 1927.
- [2]
A. J. C Cunningham and H. J. Woodall, Factorisation of
and
, Messenger of Mathematics vol. 47 (1917) pp. 1-38.
- [3] L. E. Dickson, History of the theory of numbers, vol. 1, Washington, Carnegie Institution, 1919.
- [4] Bernard Friedman and Marshall Hall, Problems and Solutions: Advanced Problems: Solutions: 3707, Amer. Math. Monthly 44 (1937), no. 6, 397–400. MR 1524010, https://doi.org/10.2307/2301086
- [5] M. Kraitchik, Recherches sur la théorie des nombres, vol. 1, Paris, Gauthier-Villars, 1924.
- [6] -, Théorie des nombres, vol. 2, Paris, Gauthier-Villars, 1926.
- [7] J. C. Morehead, Note on the factors of Fermat’s numbers, Bull. Amer. Math. Soc. 12 (1906), no. 9, 449–451. MR 1558370, https://doi.org/10.1090/S0002-9904-1906-01371-4
- [8] Hans Riesel, A note on the prime numbers of the forms 𝑁=(6𝑎+1)2²ⁿ⁻¹-1 and 𝑀=(6𝑎-1)2²ⁿ-1, Ark. Mat. 3 (1956), 245–253. MR 76793, https://doi.org/10.1007/BF02589411
- [9] -, A new Mersenne prime, Math. Tables Aids Comput. vol. 12 (1958) p. 60.
- [10] Raphael M. Robinson, Mersenne and Fermat numbers, Proc. Amer. Math. Soc. 5 (1954), 842–846. MR 64787, https://doi.org/10.1090/S0002-9939-1954-0064787-4
- [11] Raphael M. Robinson, Factors of Fermat numbers, Math. Tables Aids Comput. 11 (1957), 21–22. MR 85269, https://doi.org/10.1090/S0025-5718-1957-0085269-0
- [12] -, Table of factors of numbers one unit larger than small multiples of powers of two, Paris, Gauthier-Villars, 1957. (Tabulated)
- [13] Raphael M. Robinson, Some factorizations of numbers of the form 2ⁿ±1, Math. Tables Aids Comput. 11 (1957), 265–268. MR 94313, https://doi.org/10.1090/S0025-5718-1957-0094313-6
- [14] Raphael M. Robinson, The converse of Fermat’s theorem, Amer. Math. Monthly 64 (1957), 703–710. MR 98057, https://doi.org/10.2307/2309747
- [15]
P. Seelhoff, Die Zahlen von der Form
, Zeitschrift für Mathematik und Physik, vol. 31 (1886) p. 380.
- [16] J. L. Selfridge, Factors of Fermat numbers, Math. Tables Aids Comput. vol. 7 (1953) pp. 274-275.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 10.00, 68.00
Retrieve articles in all journals with MSC: 10.00, 68.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1958-0096614-7
Article copyright:
© Copyright 1958
American Mathematical Society