ON THE STRUCTURE OF MAXIMUM MODULUS ALGEBRAS

WALTER RUDIN

Let U, K, and C denote the open unit disc, the closed unit disc, and the unit circumference, respectively. In [1], an algebra \mathcal{A} of continuous complex functions defined on K was said to be a maximum modulus algebra on K if for every $f \in \mathcal{A}$

$$\max_{z \in K} |f(z)| = \max_{z \in C} |f(z)|,$$

i.e., if every $f \in \mathcal{A}$ attains its maximum modulus on C. As a matter of convenience, we shall, in this paper, abbreviate “maximum modulus algebra on K” to “M-algebra.”

Examples of M-algebras which come to mind immediately are (a) the algebra A consisting of all functions which are continuous on K and analytic in U, (b) any subalgebra of A, (c) any algebra \mathcal{B} which is equivalent to an algebra of analytic functions via a homeomorphism of K, i.e., any algebra \mathcal{B} with which there is associated a homeomorphism h of K into the complex plane, such that every $f \in \mathcal{B}$ is of the form

$$f(z) = f^*(h(z)) \quad (z \in K)$$

for some f^* which is continuous on $h(K)$ and analytic in $h(U)$.

Does this list contain all M-algebras? The results of [1] seemed to point toward a positive answer. In fact, the main theorem of [1], stated in somewhat different form, is as follows:

Theorem 1. Consider the following two conditions which an M-algebra \mathcal{B} may satisfy:

(i) There is a function $h \in \mathcal{A}$ which is a homeomorphism of K.

(ii) \mathcal{B} contains a nonconstant function $\phi \in A$.

Condition (i) alone implies that \mathcal{A} is equivalent to an algebra of analytic functions, via h. Conditions (i) and (ii) together imply that $\mathcal{B} \subseteq \mathcal{A}$.

The next question that arises naturally is whether (ii) alone implies that $\mathcal{B} \subseteq \mathcal{A}$. That this is not so was shown by an example in [3]; there an M-algebra \mathcal{B}' was constructed which was generated by two functions f and g, where f was analytic (and not constant) in U and g
was not analytic. It is clear, incidentally, that \(\mathcal{R} \) cannot be equivalent to any algebra of analytic functions; for if \(f(z) = f^*(h(z)) \) and \(g(z) = g^*(h(z)) \), as in (2), with \(f^* \) and \(g^* \) analytic, then the analyticity of \(f \) implies that \(h \) is analytic (compare [1, p. 452]), and this forces \(g \) to be analytic.

The algebra \(\mathcal{R}' \) does not separate points on \(K \) (i.e., there exist \(z_1 \in K, z_2 \in K \) such that \(z_1 \neq z_2 \) but \(\phi(z_1) = \phi(z_2) \) for every \(\phi \in \mathcal{R}' \)). Thus the question arises whether the conclusion “\(\mathcal{R} \subset \mathcal{A} \)” of Theorem 1 can be rescued if we assume (ii) and some weakened form of (i), for instance, if we replace (i) by the requirement that \(\mathcal{R} \) should separate points on \(K \) (so that there is a canonical homeomorphism of \(K \) into the maximal ideal space of the Banach algebra \(\mathcal{R} \), the uniform closure of \(\mathcal{R} \); we may assume without loss of generality that \(\mathcal{R} \) contains the constants [1, p. 450]). The answer, given in the present paper, settles the question raised in [2], and is again negative:

Theorem 2. There exists a finitely generated \(M \)-algebra \(\mathcal{R} \) such that

\begin{enumerate}
 \item \(\mathcal{R} \) separates points on \(K \),
 \item \(\mathcal{R} \) contains nonconstant functions which are analytic in \(U \), and
 \item \(\mathcal{R} \) contains functions which are not analytic in \(U \).
\end{enumerate}

Proof. Let \(P \) be a perfect, totally disconnected, bounded subset of the plane, whose two-dimensional Lebesgue measure is positive. Let \(Q \) be the set of all points \((w_1, w_2, w_3, w_4)\) in the space of 4 complex variables (i.e., the 8-dimensional euclidean space \(E^8 \)) such that \(w_i \in P \) for \(i = 1, 2, 3, 4 \); \(Q \) is the cartesian product \(P \times P \times P \times P \), embedded in \(E^8 \) in a natural way. Note that both \(P \) and \(Q \) are homeomorphic to the Cantor set.

There exists a simple closed curve \(J \) in the plane such that \(P \subset J \). Let \(D \) be the interior of \(J \). The crux of the proof will be the construction of 4 complex continuous functions \(h_1, \ldots, h_4 \) on \(K \), with the following properties:

\begin{enumerate}
 \item There exists a subset \(H \) of \(C \), homeomorphic to the Cantor set, such that the mapping
 \[z \rightarrow (h_1(z), h_2(z), h_3(z), h_4(z)) \]
 is one-to-one on \(H \) and maps \(H \) onto \(Q \).
 \item \(h_1 \in A \) and \(h_1(K - H) \subset D \); \(h_1 \in A \) and \(h_1(K - H) \subset D \);
 \item The set \(\{h_2, h_3, h_4\} \) separates points on \(K - H \);
 \item There is an arc \(L \subset U \) on which \(h_2 \) is constant.
\end{enumerate}

(We note that (\(\delta \)) could be replaced by practically any condition which assures nonanalyticity.)

Once we have these functions, we can prove the theorem quite
rapidly. Since P has positive measure, there exist nonconstant complex functions q_1, q_2, q_3 which are continuous in the plane, analytic in the complement of P (including the point at infinity), such that the set $\{q_1, q_2, q_3\}$ separates points in the plane; for the proof of this, see [4, pp. 826–827]. Let \mathfrak{A} be the algebra generated by the functions f_{ij}, where

$$f_{ij}(z) = q_i(h_j(z)) \quad (i = 1, 2, 3; j = 1, 2, 3, 4; z \in K).$$

Condition (β) implies that $f_{ii} \in \mathcal{A}$; condition (δ) implies that $f_{iz} \in \mathcal{A}$; conditions $(\alpha), (\beta), (\gamma)$ together imply that the set $\{h_1, h_2, h_3, h_4\}$ separates points on K, and hence \mathfrak{A} separates points on K. There only remains the verification that \mathfrak{A} is an M-algebra.

Every member of \mathfrak{A} is of the form

$$f(z) = g(f_{ij}(z)) = g(q_i(h_j(z))),$$

where g is a polynomial in 12 variables. Put

$$\phi(w_1, w_2, w_3, w_4) = g(q_i(w_j)).$$

If we keep w_2, w_3, w_4 fixed, then ϕ, as a function of w_1, is analytic in the complement of P. The maximum modulus theorem therefore implies that there is a point $w_1^* \in P$ such that

$$|\phi(w_1, w_2, w_3, w_4)| \leq |\phi(w_1^*, w_2, w_3, w_4)|.$$

Keeping w_1^*, w_3, w_4 fixed, and then repeating this procedure twice more, we find that there is a point $(w_1^*, w_2^*, w_3^*, w_4^*) \in Q$ such that

$$|\phi(w_1, w_2, w_3, w_4)| \leq |\phi(w_1^*, w_2^*, w_3^*, w_4^*)|$$

for all (w_1, w_2, w_3, w_4). By (α) there is a point $z^* \in H$ such that $h_j(z^*) = w_j^* \quad (j = 1, \cdots, 4)$, and a glance at (4), (5), and (7) shows that

$$|f(z)| \leq |f(z^*)|$$

for all $z \in K$.

Thus \mathfrak{A} is an M-algebra, and Theorem 2 follows.

We now turn to the construction of the functions h_1, \cdots, h_4 and of the set \mathcal{H}.

Let E be a perfect subset of C, of measure zero. There exist complex continuous functions ϕ_1, \cdots, ϕ_4, defined on E, such that the mapping

$$t \mapsto (\phi_1(t), \phi_2(t), \phi_3(t), \phi_4(t))$$

is a homeomorphism of E onto Q. By the theorem proved in [3], there exists a function $f_1 \in \mathcal{A}$, such that $f_1(t) = \phi_1(t)$ for all $t \in E$ and
such that $f(K) \subset D \cup J$. Let K' be the closed convex hull of E, let ψ be a conformal map of K onto K' (i.e., ψ is a homeomorphism of K onto K' which is conformal in the interior of K), and put $H = \psi^{-1}(E)$. Define

$$h_1(z) = f_1(\psi(z)) \quad (z \in K),$$

and

$$h_j(z) = \phi_j(\psi(z)) \quad (j = 2, 3, 4; z \in H).$$

Then condition (β) holds, and if we can extend h_2, h_3, h_4 from H to K so that (γ) and (δ) are satisfied, the proof will be complete, since (α) is implied by our choice of $\{\phi_j\}$.

Triangulate $K - H$; each compact subset of $K - H$ will be covered by a finite collection of triangles (some of these will be curvilinear), and every point of H will be a limit point of the set T of vertices. Pick two vertices $t', t'' \in U$ which are joined by an edge of our triangulation, and define $h_j(t)$ for $j = 2, 3, 4$ and $t \in T$ such that h_j is continuous on $H \cup T$, such that

$$h_2(t') = h_2(t'') = 0,$$

and such that the points $h(t) = (h_2(t), h_3(t), h_4(t))$ are in general position in E^6; i.e., no $m + 2$ of these points lie in any linear m-space, for $m = 1, \ldots, 4$.

Let Δ be one of our triangles, with vertices t_1, t_2, t_3. Define $h_j(z)$ for $z \in \Delta$ so that the mapping

$$z \to (h_2(z), h_3(z), h_4(z))$$

is a homeomorphism of Δ onto the (rectilinear) triangle whose vertices are the points $h(t_1), h(t_2), h(t_3)$ in E^6.

The functions h_j are now extended to K and are continuous on K.

Since the points $h(t)$ are in general position, no two triangles whose vertices are among these points will intersect, except possibly in a common vertex or a common edge. It follows that condition (γ) is satisfied; and (12) shows that condition (δ) also holds, with the interval $[t', t'']$ for L.

This completes the proof of the theorem. It seems quite likely that another proof can be given by exhibiting an example with fewer generators; their number can perhaps be pushed down to 2, but different methods are needed for this.

In conclusion, we pose another problem:

Suppose \mathcal{A} is an M-algebra such that $\mathcal{A} \cap \mathcal{R}$ separates points on K. Does it follow that $\mathcal{A} \subset \mathcal{A}$?
ON A CLASS OF UNIVERSAL ORDERED SETS

ELLIOTT MENDELSON

An ordered set B is said to be \aleph_α-universal if and only if every ordered set of power \aleph_α is similar to a subset of B. Let U_ω be the lexicographically ordered set of all sequences of 0's and 1's of type ω; and let H_α be the subset of U_ω consisting of all sequences $\{x_\xi\}_{\xi<\omega}$ for which there is some $\xi_0<\omega$ such that $x_{\xi_0}=1$ and, for $\xi>\xi_0$, $x_\xi=0$.

H_0, being countable, dense, and without first or last element, is similar to the set of rationals in their natural order, and therefore, is \aleph_0-universal. Sierpiński [2] has shown (as a direct consequence of his theorem that $H_{\alpha+1}$ is an $\eta_{\alpha+1}$-set) that, for any α, $H_{\alpha+1}$ is $\aleph_{\alpha+1}$-universal. Gillman [1] has given a demonstration that, for any limit ordinal α, H_α is \aleph_α-universal. The purpose of this note is to give a very simple proof of these results, which does not depend on the ordinal α.

Theorem. H_α is \aleph_α-universal.

Proof. Let A be an ordered set of power \aleph_α. Fix some well-ordering $\{a_\beta\}_{\beta<\omega}$ of A. Let $<$ denote the order in A. Define a function ϕ from A into H_α in the following way. Let a_τ be an element of A, and $\beta<\omega$. Then the βth component $\phi_\beta(a_\tau)$ of $\phi(a_\tau)$ is defined by:

$$
\phi_\beta(a_\tau) = \begin{cases}
1 & \text{if } \beta \leq \tau \text{ and } a_\beta \leq a_\tau, \\
0 & \text{otherwise.}
\end{cases}
$$

Now, let a_τ and a_σ be any elements of A, with $a_\tau< a_\sigma$. Clearly, if $\beta \leq \sigma$, $\phi_\beta(a_\sigma) \geq \phi_\beta(a_\tau)$. But, $\phi_\beta(a_\sigma)=1$ and $\phi_\beta(a_\tau)=0$. Hence, $\phi(a_\tau)$ pre-

Received by the editors March 27, 1958.