TOTALLY NONCONNECTED IM KLEINEN CONTINUA

EDWARD E. GRACE

If a connected topological space \(T' \) is not connected im kleinen at the point \(p \) of \(T' \), then there is some open set \(D' \) containing \(p \) such that \(p \) is a boundary point of the \(p \)-component of \(D' \).

This paper shows that much stronger conditions than those above hold at some points of a Baire topological continuum\(^1\) which is not connected im kleinen at any point of a certain domain intersection subset. Limits to results of this kind are shown by an example of a bounded plane continuum that is connected im kleinen at each point of a dense inner limiting (i.e., \(G_\delta \)) subset but is not locally connected at any point.

Definition. A topological continuum \(T' \) is totally nonconnected im kleinen on a subset \(A \) of \(T' \) if \(T' \) is not connected im kleinen at any point of \(A \) (i.e., if each point \(p \) of \(A \) is contained in some open subset \(U \) of \(T' \) such that \(p \) is a boundary point, relative to \(T' \), of the \(p \)-component of \(U \)).

Definition. If (1) \(T' \) is a topological continuum, (2) \(Z' \) is the least cardinal number of any topological basis for \(T' \), (3) the set \(U \) is an open subset of \(T' \), and (4) the subset \(A \) of \(U \) is the nonvacuous common part of not more than \(Z' \) open subsets of \(T' \), each dense in \(U \), then \(A \) is a dense-domain intersection subset of \(U \) (relative to \(T' \)). If, in addition to (1), (2) and (3), \(U \) is not the sum of \(Z' \), or fewer than \(Z' \), closed nowhere dense subsets of \(T' \), then \(T' \) is Baire topological on \(U \). If \(T' \) is Baire topological on each open subset of \(U \), then \(T' \) is locally Baire topological on \(U \).

Theorem 1. If the topological continuum \(T' \) is Baire topological on the open subset \(U \), then \(U \) contains an open subset \(V \) such that \(T' \) is locally Baire topological on \(V \).

Proof. Let \(R'_1, R'_2, \ldots, R'_i, \ldots \) be a most economical well-ordering of a basis for \(T' \) of minimum cardinality. Assume \(T' \) is not locally Baire topological on any open subset of \(U \). Then there is a subsequence \(R'_{N(1)}, R'_{N(2)}, \ldots, R'_{N(i)}, \ldots \) of \(R'_1, R'_2, \ldots, R'_i, \ldots \) such that, for each \(i \), there is a dense-domain intersection subset \(I_i \) of \(T' \) such that \(I_i \cdot R'_{N(i)} = 0 \) and each open subset of \(U \) contains some term of \(R'_{N(1)}, R'_{N(2)}, \ldots, R'_{N(i)}, \ldots \). But \(\prod_i I_i \) is the common part...

\(^1\) The terminology of this paper is that of [1].
of not more than \(Z' \) dense-domain intersection subsets of \(T \), where \(Z' \) is the cardinality of \(R'_1, R'_2, \ldots, R'_i, \ldots \). Consequently [1, Theorem 3], the set \(\prod_i I_i \) is a dense-domain intersection subset of \(T \). But [1, Theorem 1], the closure of any dense-domain intersection subset of \(T \) contains an open subset of \(U \), and therefore, the closure of \(\prod_i I_i \) contains an open subset of \(U \). This is a contradiction.

Standing notation. \(T \) is a topological continuum which is locally Baire topological on the open set \(D \) and is totally nonconnected im kleinen on a dense-domain intersection subset \(I \) of \(D \). The least cardinal number of a basis for \(T \) is \(Z \). The collection \(R \) of regions is a basis for \(T \) of cardinality \(Z \). The sequence \(R_1, R_2, \ldots, R_i, \ldots \), is a most economical well-ordering of \(R \).

Lemma 1. Let \(U \) be an open subset of \(D \) and let \(S \) be the set of all points \(p \) such that \(p \) is in \(U - U \) or \(p \) is in \(U \) and \(p \) is a boundary point of the \(p \)-component of \(U \). Then \(S \) is closed.

Proof. Assume there is a point \(q \) in \(S \) which is not in \(S \). Then \(q \) is in \(U \) since \(U \supset S \) and each point of \(U - U \) is in \(S \). Therefore, each region containing \(q \) contains a point \(r \) of \(S \cdot U \) and hence contains a point of \(U \) not in the \(q \)-component of \(U \). Consequently, \(q \) is in \(S \). This is a contradiction and so \(S \) is closed.

Lemma 2. Let \(V \) be an open subset of \(D \). Then \(V \) contains an open set no component of which contains an open set.

Proof. Let \(R_{M(1)}, R_{M(2)}, \ldots, R_{M(i)}, \ldots \) be the subsequence of \(R_1, R_2, \ldots, R_i, \ldots \) consisting of those terms contained in \(V \). For each \(i \), let \(S_i \) be the set related to \(R_{M(i)} \) as \(S \) is related to \(U \) in Lemma 1. The continuum \(T \) is totally nonconnected im kleinen on the dense-domain intersection subset \(I \cdot V \) of \(V \) and therefore \(\sum_i S_i \supset I \cdot V \). But, since \(I \) is a dense-domain intersection subset of \(D \), the set \(D - I \) is contained in the sum of not more than \(Z \) closed sets, each nowhere dense in \(D \). Hence, if each term of \(S_1, S_2, \ldots \), were nowhere dense, then \(V \) would be contained in the sum of not more than \(Z \) closed, nowhere dense subsets of \(T \). But that can not be, since \(T \) is Baire topological on \(V \). Consequently, for some \(i \), the set \(S_i \) contains an open set \(V' \). By definition of \(S \), no component of the open set \(V \cdot V' \) can contain an open set.

Theorem 2. The open set \(D \) contains an open set \(D' \), dense in \(D \), no component of which contains an open set.

Proof. Let \(D_1 \) be an open subset of \(D \), no component of which contains an open set. If \(i \) is an ordinal greater than 1 such that the
closure of $\sum_{j<i} D_j$ does not contain D, then let D_i be an open subset of the complement, in D, of the closure of $\sum_{j<i} D_j$, no component of which contains an open set. Let $D' = \sum_i D_i$. Then D' is an open subset of D, dense in D, no component of which contains an open set.

Theorem 3. Let the topological continuum T' be locally Baire topological on the open set V. Then T' is totally nonconnected im kleinen on a dense-domain intersection subset of V if and only if there is an open subset of V, dense in V, no component of which contains an open set.

Theorem 4. If T is regular then T contains a dense-domain intersection subset J of D, contained in I, such that if p is a point of J and T is nonaposyndetic at p with respect to $T - \overline{R}_i$, where R_i contains p, then the p-component of \overline{R}_i does not contain an open set.

Proof. The collection G of complements of closures of regions of R has the Z-domain property and T is totally nonaposyndetic on I with respect to G. Let P be a dense subset of T of cardinality not greater than Z. The author has proved [1, Theorem 8] that under these circumstances there is a dense-domain intersection subset J of D, contained in I, such that if q is a point in J and T is nonaposyndetic at q with respect to $T - \overline{R}_i$ of G then $T - \overline{R}_i$ cuts (weakly) q from each point of $P \cdot \overline{R}_i$. In which case, the p-component of \overline{R}_i does not contain an open set.

The following example of a plane continuum, each connected open subset of which is dense in it, shows that Theorem 3 does not hold if “totally nonconnected im kleinen on a dense-domain intersection subset of V” is replaced by “not locally connected at any point of V”; even in the case where $V = T'$.

Let H_1, H_2, \cdots be the sequence of closed plane point sets defined by induction as follows. Let S denote the unit disk and let H_1 be the logical sum of the closed (topological) disk sequence J_1, J_2, \cdots indicated in Figure 1. The sum of the straight portions of J_1, J_2, \cdots, J_4 is the limiting set of J_1, J_2, \cdots.

Assume H_i to be defined and let J'_1, J'_2, \cdots be a counting of the closed disks maximal in H_i. For each natural number j, there exist two points r and s of J'_j such that $r+s$ cuts J'_j from $H_i - J'_j$ in H_i and such that if a single point t does the same cutting then $t = r$. Let f_j be a homeomorphism of S onto J'_j such that $f_j(p) = r$ and $f_j(q) = s$. Let $H_{i+1} = \sum_j f_j(H_i)$. The homeomorphisms of S onto the closed maximal disks of the sets H_2, H_3, \cdots are chosen in such a way that the diameters of disks in H_1, H_2, \cdots are eventually as small as one wishes.
Let $H = \prod_i H_i$. It is clear that H is not locally connected at any point but H is connected im kleinen at each point of the dense inner limiting subset of H consisting of the points that, for each i, are interior points (in the plane) of H_i. Hence H does not contain any open set no component of which contains an open set.

Bibliography