
THE COHOMOLOGY ALGEBRA OF CERTAIN LOOP SPACES

EDWARD HALPERN

The purpose of this paper1 is to determine the cohomology algebra

of a loop space over a topological space whose cohomology algebra is a

truncated polynomial algebra generated by an element of even de-

gree. As special cases we obtain the well-known results when the base

space has as cohomology algebra an exterior algebra (the base space

an even dimensional sphere) or a polynomial algebra (the base space

infinite dimensional complex projective space; compare also Theo-

rem 2 in [l]). In particular, the result is applicable to loop spaces

over complex and quaternionic projective w-spaces and the Cayley

plane.

Throughout, A will denote a commutative ring with unit and A-

algebra will mean an associative ^4-algebra with unit.

1. Augmented spectral sequences of algebras. A differential A-

module consists of an .4-module E and a (module) endomorphism

d: E—+E such that dd = 0. The map d is called a differential and the

elements of its kernel and image are called cycles and boundaries

respectively; the quotient module H(E) = Kernel of d/lmage of d is

called the derived module. A differential A-algebra consists of an A-

algebra which is a differential A -module and an automorphism

co: E—^E such that

(1.1) du + oid = 0,        d(xy) = (dx)y + u(x)dy, x, y E E.

It follows that H(E) has a naturally induced multiplication under

which H(E) is an A -algebra. An augmentation of a differential A-

algebra is an algebra homomorphism a: E-+A with right inverse

fi: A-^E such that ad = 0. It follows that H(E) has a naturally in-

duced augmentation a. The kernel of a will be denoted by E+.

An augmented spectral sequence of A-algebras is a sequence of aug-

mented differential ^4-algebras (Er), r^O, such that Er+i = H(Er) and

ar+i = ar. The limit of (Er) is the augmented .4-algebra defined as fol-

lows: An element xrEEr is called a permanent cycle if it is a cycle and

its successive projections in Er+\, Er+2, ■ ■ ■ are cycles. Let Ex be

the set of sequences (xr) where xr is a permanent cycle of Er and xr+i

is the projection of xr in Er+i, with two such sequences identified if

x, = x'r for all r^ro. Defining
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(xr) + (yr) = (x, + yr),        a(xr) = (ax/), aE A,

(xr)(yr) = (x,yr), a(xr) = arxr,

where ar is the augmentation of E„ makes Ex into an augmented

A -algebra. The augmentation a of Ex is well-defined and its kernel

Et is the subalgebra defined by permanent cycles (xr) such that

xrEE?. The spectral sequence is acyclic if E£=0.

An augmented spectral sequence of A -algebras is canonical if the

sequence (Er) is defined for r^2 and for each r:

(a) £r is a bigraded algebra, Er= ^..JS**, with £f,8 = 0 if p<0

or q<0; moreover, the multiplication in Er is anticommutative with

respect to total degree p+q.

(b) The differential dr is bihomogeneous of bidegree (r, 1—r).

(c) The automorphism wr is given by cor(x) = (— l)v+qx for x£E?'a.

(d) The augmentation ar maps £?'° isomorphically onto A.

(e) E™i=H(E™).
It follows from (d) that £r+ = Ep+s>° £"• From (e) it follows that

£«, has a naturally induced bigrading with E^° = 0 if p<0 or g<0. In

view of (d) it then follows that a maps E^° isomorphically onto A,

and Et = Ep+»>o -^»5- Thus acyclicity of the spectral sequence is

equivalent to the statement that £^s = 0 for p+q>0. It may be

readily proved that

(1.3) E"'" = E™ = ■ ■ ■ = ET ifr>pandr>q+l.

The spectral sequence is said to be initially decomposable if

V.Q V.O 0,0

(1.4) £2    =£2-£2;

more precisely, if every yEE™ can be written as a sum of products

xz where xEEp2'° and zEE0/. Note that 73 = E^'0 and F= E^'8

are graded subalgebras of £2.

2. Monogenic twisted polynomial algebras. A monogenic twisted

polynomial A-algebra of height h, 2^h^ co, and type t = (tm,n) is a free

A -module generated by a sequence of elements x0, xi, • ■ • , xh-i with

multiplication defined by

ttm,nXm+n m + W < k.

(2.1) XmXn =   <
\0 m + n ^ h,

where the tm,n are nonzero elements of A which satisfy:

(2.2) t0,n =   1, C,0 =   1,

\£..d)                                                             *m,n   ==   ln,mi
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(2.4) lm,ntm+n,k —  tm,n+kln,k.

From (2.3) and (2.4) follow commutativity and associativity re-

spectively; from (2.1) and (2.2) follows that x0 = l. The powers x" are

related to the generators xm as follows: Putting tk = h,k-i, (k>0), then

by induction one proves

(2.5) xi = hh ■ ■ ■ lmxm.

We shall write Xi=x and denote the algebra by A [x, h, t]. In par-

ticular, if tm,n = l for all m+n<h then the algebra is the ordinary

(truncated) polynomial algebra of height h which we shall denote by

A [x, h]; evidently A [x, 2] is the exterior algebra l\A(x). If each

tm,n differs from the binomial coefficient (m, n)=m+n\/m\n\ by a

unit then the algebra will be said to be of binomial type.

A monogenic twisted A-algebra of binomial type is a free .4-module

generated by a sequence of elements (x0, Xi, x2, ■ ■ • ) with multiplica-

tion defined by

(2.6) xnxn = (m, n)xm+n.

It will be denoted by Ta(xo, Xi, x2, ■ ■ ■ ). Since the binomial coeffi-

cients satisfy (2.2), (2.3), and (2.4), TA(xo, Xi, Xj, • • • ) is associative,

commutative, and x0 = l.

We note the following readily proved property of the binomial

coefficients (m, n) modulo a prime p:

(2.7) (m, n) = (m0, «o)(/»i, ni) • ■ ■ (mj, nf),

where

(2.8) m = mo + mip + • ■ • + mip\    n = n0 + nip + ■ ■ • + njp',

i ^j,

are the p-adic expansions of m and n, and /Wt = 0 if k>i.

Proposition 1. (a) If A has characteristic zero then

(2.9) TA(x0, Xi, x2, ■ ■ ■ ) = A[x, oo, /].

(b) // A has characteristic prime p then there is an algebra isomor-

phism2

(2.10) <b- Ta(x0, xi, x2, • • • ) = ®.so A[xpi, p, <<«],      t]n = (m, n).

Proof. To prove (a) we need only note that (m, n) ?±0. (b) For each

ii^O define p elements ym=xmpi, 0^m<p. If 0^m<p and 0^n<p

then, using (2.6) and (2.7), we have

' By ®i£0 is meant the "weak" tensor product.
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(<)   (i) /    J       J\ r \
ym yn    = xmp'x„p> = (mp , np )X(m+n)„* = (m, n)x{m+„)P>.

It is clear that (m, n)=0 if and only if m+n^p; hence

«)  c)       ((m> n)ym+n m + n < p,
ym yn  = \ „

{ 0 m + n ^ p.

Thus (2.1) is satisfied; the remaining conditions (2.3), (2.4), and (2.5)

are also satisfied as noted previously. Thus for each i we have a sub-

algebra A [;y(i), p, t(i)] (of binomial type). It remains to show that

Ta(xq, Xi, x2, ■ • • ) is isomorphic to their tensor product.

It follows from (2.6) and (2.7) that corresponding to the p-adic

expansion (2.8) for m, we may write xm as a unique product

(0)    (1) («)
Xm Xm(jXmiP '   '   ' Xm^px 3^m0 yml    *   *   ' y*ni •

Therefore the correspondence defined by

<£(*.») = y™0 ® y»»i ® • • • ® y<»i

establishes a module isomorphism (2.10). It remains to show that <j>

is multiplicative. Let (2.8) be the £-adic expansions of m and n (we

may assume i^-j). Then, using (2.6) and (2.7),

<?i(xm)^(xn) = (ymo ® • • • ® ym,)(y„0 ® • • • ® y»y )

(2.11) = (wo, «o) • • • (mj, nj)ymo+n!1 ® ■ • • ® yj/+„y

= (/», n)ym<+n<) ® • • • ® y*j+»y

We consider 2 cases:

(i) If (m, w)=0 mod p then 0(xm)<£(x„) =0. But also 4>(xmx„)
-0(0) =0.

(ii) If (m, m)^0 mod p then none of the factors (mr, nr), O^r^j,

are zero and hence mr+n,<p for all r. But then

m + n = (f»o + Mo) + («i + «i)^ + • • ■ + (mj + n,)p>,

<*>(*»+»)   =  J-mo+no ®   •   •   '   ® ymj+nj-

Thus (2.11) becomes

*(xm)0(xn) = (m, n)(j> ■» 4>(xm+n),

completing the proof of Proposition 1.

3. The main theorem.

Theorem 1. Let (Er) be an initially decomposable acyclic canonical-

spectral sequence of A -algebras. If B is a truncated polynomial algebra
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A[x, h] where x has even degree m^2, then

(3.1) F£* l\A (Xl) ® TA(zo, z2,zh ■ ■ ■)

where ZiEF and is of degree m — 1 and z2iEF and has degree i(hm — 2).

In view of Proposition 1 we have:

Corollary, (a) // in addition A has characteristic zero then

(3.2) F^ Ax (Zl) ® A[z2, co,/],

the second factor being of binomial type.

(b) // in addition A has prime characteristic p then

(3.3) F^KA (zi) ®<ao A[z2pi, p, /<«],

each of the monogenic factors in the tensor product being of binomial

type.

Proof. The following is a trivial consequence of (1.5):

(3.4) EPT,q = 0 ii E2° = 0 or E°2'9 = 0 (r ^ 2).

We note further that the assumption on B gives

(3.5) £2'° =0, if p 5* tm, (I = 0, 1, • • • , h - 1),

tm.o        (0 if  / ^ h,
(3.6) E2      =  {

(Ax' ii0^l<h,

(by A -x' we mean the free A -module generated by x')- We shall now

prove:

(3.7) E2 = Ez = ■ ■ ■ = Em,

(3.7)' Etm+l  =   Etm+2  =    •   ■   ■   =   E(t+l)m, t  ^   1,

(3.7)" E(h-l)m+l   =   E(h—l)m+2  =   •   •   •   =   Ex.

If p?±sm then,  in  view of   (3.4)  and   (3.6),   £,'" = 0   and   hence

dT(EfQ) =0. On the other hand, if p = sm but r is not a multiple of m

then

,,,«>».«>    _       «m+r,9-r+l

dT(Er    ) E Er =0

(the latter module is zero by (3.4) and (3.6) since sm+r is not a

multiple of m). Thus dT = 0 if r is not a multiple of m and (3.7) and

(3.7)' follow. If r^hm then by (3.4) and (3.6), Ef+Ta~T+1=0 and hence

dr(E?'°) =0. Thus Ehm = Ehm+i= ■ ■ ■ =EX. Combining this with(3.7)'

(taking t = h-l) gives (3.7)".
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Remark. Using these results it will be possible to identify E0*

= E°r'a for some values of q and r (r>2). When we write dr(u), where

uEE°2", such an identification will be implied.

For convenience put q0 = hm — 2. We shall now prove:

A. If g^O, m — 1, modulo g0 then £?'8 = 0.

B. There exists a sequence of generators zo = l, Zi, z2, ■ ■ ■ , Zj, ■ • •

for F such that

(3.8) E2 = A-z2j+i, dm(z2j+i) = xz2j,

(3.9) E2' ° = A-z2j, d{h-i)m(z2j) = xfi-hij-i,

(note the preceding remark).

The proof is by induction on q. Let g>0 and assume:

A j. Statement A holds for all q such that 0 ̂ g <q.

Bg. We have chosen generators zo = l, z2j (0<jqo<q), and z2;+i

(m-l^jqa+m-l<q) such that (3.8) and (3.9) hold.

Clearly Ai and Bi are trivial; it remains to prove A^+i and Bj+i.

We shall first prove

0,q 0,3

(3 . 10) £(m+l   =   Etm

holds in the following cases:

(i) g = 0 (mod q0), lgr<«-l.

(ii) q=.m — 1 (mod go), 1 <t^h — 1.

(iii) q~f^0, m — 1 (mod qa), l^t^h — 1.

Consider

dtm        0,5    dtm        tm,q~tm+l

(3.11) 0 -> Etm ->Etm

Since dtmdtm = 0, to prove (3.10) it suffices to show that the last

module in (3.11) is zero. If q — tm + 1 <0 this is trivial; hence assume

q — tm + 1^0. We may write q=jq0+s, 0^s<qo.

(i) If s=0 and l^t<h-l then q-tm + 1 =jqa-tm + l^Q,

w-1 (mod g0). Therefore it follows from Aj and (3.4) that El^~tm+1
= 0.

(ii) s = m — 1 and Kt^h — 1 then q — tm + 1 =jq0 + (l—t)mf^0,

m — 1   (mod g0).  As in the preceding case we  may conclude that
£tm,q-tm+l_r\

tm                ~ "•

(iii) Suppose s^0, m — 1 and l^t^h — 1. We have q—tm + 1

= s — tm + l (mod g0). If further s^tm — 1, (t + l)m — 2, then g — tm

+ 1^0, m — 1 (mod g0), and as in the preceding two cases we may

conclude that the last module in (3.11) vanishes. It remains to con-

sider the two exceptional cases:

If s=tm — l, then q — tm + l=jqo. Consider the map
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(3.12) dm: Em —* Em,,    .

Using (3.7) and (1.4) we have

(3.13) Em       = E2       = E2    -E2     .

By hypothesis Ef'°=A x', and by B-q, E°21,a = A -z2j. It follows from

(3.13) that E'ZJ!,0=A-xtz2j. Similarly we may show £«-»«.*<>+».-1

= A -xl^lz2j+i. Now using the latter part of (3.8) we have

dm(x'-1z2j+i) = dm&'-^zij+i + x'-1dm(s2j+i) = X%j.

Thus (3.12) is an isomorphism and £^+?° = 0. It follows that the

last module in (3.11) is zero.

If s=(t + l)m — 2, then q — tm + 1 =jqa+m — 1. Since (3.12) is an

isomorphism we have that £^i)m'-'<",+m_1=0. The last module in

(3.11) is therefore zero. This completes the proof of (3.10).

Proof of A5+i. Lett/^0, m-1 (mod go). Using (3.7), (3.7)', (3.7)",

and (3.10) (case iii), we may write E2,Q = E°* which is zero by acyclic-

ity.

Proof of Bjfi. We assert that the following maps are isomor-

phisms:

(3.14) dm: Em  —» Em , if q = jg0 + m — 1;

n    ,-\ J E-0,5 (h-l)m,7,-{h-l)m+l
(J.lO) a(h-l)m'.  £-(A_l)m—> tL(h-l)m It ?  = jqo-

Assuming this we may prove Bi+i as follows: Let q=jqo+m — l:

then q — m + l=jq0<q. By (3.9), therefore E%,m = A ■ z2j. Since also

E%'° = A-x, it follows from (1.4) that £2"Ao = A ■ xz2j. Using (3.7) we

may replace the subscript m by 2 in each module in (3.14). If we

therefore define z2j+x = d~l(xz2j) then (3.8) holds for Bj+i. Now let

q=jqa- Then

q — (h — l)m + 1 = jqo — (h — l)m + 1 = (j — l)q0 + m — 1.

Since also q-(h-l)m + l <$, we have by (3.8) £j«-»-u»+i =A -z2y-i.

By hypothesis, E$~1)m,0=A -x*-1; hence it follows from (1.4) that

(A-l)m,5-(A-l)7>i+l .        *-l
(3.16) £2 = A-x    zij-i.

We assert that we may identify

,, <*-l)m.«-<A-l)m+l <A-l)m,5-(*-l)m+l

(3.17) £(A_i)m =  £2

To prove this let 1 ^t<h — 1 and consider

(k-l-()m,s    fl(m (&-l)m,5-(ft-l)m+l    »fm   _ (h-l+t)m,S

(3.18) £(m ->£*» ->Etm
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where 5 and S are the appropriate integers. The last module is

evidently zero (by 3.4) since h — l+t^h. Also

s = q- (h- l)m+ 1 + Im- 1 = (j - l)g0 + (l + l)m - 2.

Evidently 0<(t + l)m — 2 <g0 and hence s<q. Moreover, it is readily

checked that (t + l)m — 2?*0, m — 1. The first module in (3.18) is

therefore zero in view of A3 and (3.4). It follows that

fi    m\ (h-l)m.q-(,h-l)m+l (h-l)m.q-(h-l)m+l
(3.19) Etm+i = Etm , 1 $■ t < h — 1.

Using (3.7), (3.7)', and (3.19), the identification (3.17) then follows.

We may also identify

(3.20) El'™ = E\t\)m

using (3.7), (3.7)', and (3.10) (case i). If we apply (3.17) and (3.20) in

(3.15) and define z2j = d~1(xh~1z2j-i) we see that (3.9) holds for Bq+V

It remains to prove that (3.14) and (3.15) are isomorphisms. Let

q=jqo+m — 1 and consider the sequence

dm        0,9    dm        m,jq„    dm Zm.jq0-m+l

(3.21) 0-> Em    -> Em        -> Em

The last module is zero by (3.4) since by Ag we have ElJ"'~m+1=0.

Thus to prove (3.14) an isomorphism it suffices to show that E^+i =0

and £™ff = 0. The former follows using (3.7)', (3.7)", (3.10) (case ii),

and acyclicity. To prove the latter consider the sequence

(3.22) oi^'iir"^        l<t£h-l.

lft = h-lthenE2t+1)m-° = 0. If l<t<h-l then jqa-tm + l ^0, m-\,

modulo g0, and hence E2u,">-"n+1=0 by A5. In either case the last

module in (3.22) is therefore zero by (3.4) and hence ETm11" = E'tm%\ for

Kt<h. Combining this with (3.7)', (3.7)", and acyclicity it follows

that £^+i=0. Finally, let q~=jqa and consider the sequence

., .     dth-l)m     0,jq0     ^(A-l)m      (*-l)m,(*-l)jo+m-l^(A-l)m     2(»-l)m,O-l)90+;,m
(3.23) U->t.{h-l)m->£,(A_i)m ->L(n-l)m

The last module is evidently zero since 2(h — l)m>hm. Moreover,

£?Am+1 = 0, K-m+ia"'+m~1 = 0 by (3.7)" and acyclicity. Thus

(3.23) reduces to the isomorphism (3.15). This completes the induc-

tion and A and B are proved.

Using A and B we shall now prove the following multiplication rela-

tions:
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(3.24) 2l = 0,

(3.25) ziz2j = Zij+i,

(3.26) z2iz2j = (i, j)z2n+j).

Note that z\ has degree 2m —2 and z2 has degree hm — 2. Thus if

h>2, zl = 0. If h = 2 put z\ = tz2, tEA; then by (3.8) and (3.9) respec-
tively, we have

2 2
dm(zi) = xzi — ZiX = xzi — xzi = 0,        dm(zi) = txzi.

Since xsi generates a free ^4-module, /=0 and (3.24) is established.

For j = 0, (3.24) is trivial. Let j>0 and assume (3.25) for all j' <j.

Put ZiZ2y = /z2j+i, (tEA); then using (3.8) we have

(3.27) dm(ziz2j) = xz2j — zidm(z2j).

If h = 2 then using (3.9), the inductive assumption, and (3.24) in suc-

cession,

zidm(z2j) = Zi(xz2y_i) = xziZiX2/_2 = 0.

If h>2, note that dm(z2j)EE2nJ°°-m+1 which is zero by (3.4) and A.

In either case (3.27) reduces to dm(ziz2j) =xz2j. But by (3.8),

dm(ziz2j) = tdm(z2j+i) = lxz2j.

Since xz2j generates a free ^.-module, t = l and (3.25) is proved.

For i+j = 0, (3.26) is trivial. Let i+j>0 and assume (3.26) for all

*' +j'<i+j. If we put z2»z2j=/»,jZ2(,+j), then using (3.9),

d(h-i)m(z2iz2j) = (x',-1z2i_i)z2j + z2i(x*-1z2j_i),

=  X*_1Zi(z2i-2Z2/ + Z2iZ2j-2),

= Xh~lZi[(i - l,j) + (i,j - l)]z2i+2y_2,

=   (*, i)**-1Z2i+2/-l.

But also by (3.9),

dfh-l)m(Z2iZ2j)   =   li,jd(h-l)m(z2(i+j))   =   ti,jXh~1Z2(i+j)-l.

Since x*_1Z2(»+/)-i generates a free ^-module, /,•,;= (i, j).

The theorem now follows from (3.24), (3.25), and (3.26). For by

(3.24), zi spans the subalgebra /\a(zi) ; by (3.26), the elements z2J span

the subalgebras TA(z0, z2, z4, ■ • • ); and by (3.25), F is clearly iso-

morphic to the tensor product of the two subalgebras under the obvi-

ous map.

4. Topological applications. Let / denote a principal ideal domain

of characteristic p (p is then zero or a prime).
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Theorem 2. Let X be a topological space whose singular cohomology

algebra H*(X, J) = J[x, h] where x is an element of even degree rag: 2.

Let Q denote the loop space of X at a base point Xo.

(a) H*(£l, J)^f\j (zi)®J[z2, co, /], if p = 0, where Zi and z2 have

degree m — 1 and hm — 2, respectively, and the second factor is of bi-

nomial type.

(b) H*(Q, J)^Aj (2i)®,-6o/[z2P<, P, <(i>]> if P M prime, where zx

and z2pi have degrees m — 1 and p'(hm — 2) respectively, and each t(i)

is of binomial type.

Proof. Evidently X is arcwise connected, simply connected, and

torsion-free. Associated with the Serre fibering3 /: £—>X where E is

the space of paths beginning at x0 (and fi is the fibre at x0) is a canoni-

cal spectral sequence of ./-algebras (Er) which is acyclic (since £ is

contractible) and such that E^Q^.H"(X, J) ®H«(Q, J) (since X is a

torsion-free and / is a principal ideal domain). These isomorphisms

give an identification of the bigraded /-algebras, E2=H*(X, J)

®//*(fi, J). Since the spectral sequence is initially decomposable,

Theorem 2 follows immediately from Theorem 1 and its corollary.

Let Pn and Qn denote the complex and quaternionic projective re-

spaces, l^MfS oo, respectively, and let C denote the Cayley plane.

Their cohomology algebras are known to be

H*(Pn, J)= j[x, n + l], degree of x = 2;

H*(Qn, J) =J[x, m + 1], degree of x = 4;

H*(C, J)=J[x, 3], degree of x = 8.

Thus, Theorem 2 applies to Pn, Qn, and C.
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