THE COHOMOLOGY ALGEBRA OF CERTAIN LOOP SPACES
EDWARD HALPERN

The purpose of this paper! is to determine the cohomology algebra
of a loop space over a topological space whose cohomology algebraisa
truncated polynomial algebra generated by an element of even de-
gree. As special cases we obtain the well-known results when the base
space has as cohomology algebra an exterior algebra (the base space
an even dimensional sphere) or a polynomial algebra (the base space
infinite dimensional complex projective space; compare also Theo-
rem 2 in [1]). In particular, the result is applicable to loop spaces
over complex and quaternionic projective #n-spaces and the Cayley
plane.

Throughout, 4 will denote a commutative ring with unit and 4-
algebra will mean an associative 4-algebra with unit.

1. Augmented spectral sequences of algebras. A differential A-
module consists of an A-module E and a (module) endomorphism
d: E>E such that dd=0. The map d is called a differential and the
elements of its kernel and image are called cycles and boundaries
respectively; the quotient module H(E) = Kernel of d/Image of d is
called the derived module. A differential A-algebra consists of an 4-
algebra which is a differential 4-module and an automorphism
w: E—E such that

1.1) dw + wd = 0, d(xy) = (dx)y + w(x)dy, x,y € E.

It follows that H(E) has a naturally induced multiplication under
which H(E) is an A-algebra. An augmentation of a differential 4-
algebra is an algebra homomorphism a: E—A with right inverse
B: A—E such that ad=0. It follows that H(E) has a naturally in-
duced augmentation @ The kernel of a will be denoted by E+.

An augmented speciral sequence of A-algebras is a sequence of aug-
mented differential A-algebras (E,), =0, such that E,,, =H(E,) and
a,41=a,. The limit of (E,) is the augmented 4-algebra defined as fol-
lows: An element x,EE, is called a permanent cycle if it is a cycle and
its successive projections in E,y1, E,s, -+ - are cycles. Let E, be
the set of scquences (x,) where x, is a permanent cycle of E, and x,41
is the projection of x, in E.;;, with two such sequences identified if
x,=x; for all r=7r, Defining
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(%) + () = (&% + 30,  a(@) = (ax), e € 4,

(1.2)
(%) (yr) = (xryr); o(xy) = arky,

where «, is the augmentation of E,, makes E, into an augmented
A-algebra. The augmentation « of E, is well-defined and its kernel
E} is the subalgebra defined by permanent cycles (x,) such that
x,EE}. The spectral sequence is acyclic if E%=0.

An augmented spectral sequence of A-algebras is canonical if the
sequence (E,) is defined for #=2 and for each r:

(a) E,is a bigraded algebra, E,= _, , E??, with E?*=0 if p<0
or ¢ <0; moreover, the multiplication in E, is anticommutative with
respect to total degree p+-g¢.

(b) The differential d, is bihomogeneous of bidegree (r, 1 —7).

(¢c) The automorphism w, is given by w,(x) = (—1)?+w for xS EPY,

(d) The augmentation ¢, maps EX° isomorphically onto 4.

(¢) Erf=H(E?").

It follows from (d) that E}f = 3,440 E2% From (e) it follows that
E, has a naturally induced bigrading with E%?=0if » <0 or ¢<0. In
view of (d) it then follows that  maps E%’ isomorphically onto 4,
and EfX =3 ,, 50 E%%. Thus acyclicity of the spectral sequence is
equivalent to the statement that E%'=0 for p-+4¢>0. It may be
readily proved that

p.q D,q

(1.3) E'=E) = --=E" ifr>pand r>g+41.

The spectral sequence is said to be initially decomposable if
(1.4) By = B By

more precisely, if every y& E}? can be written as a sum of products
xz where xE€E}° and zEE}%. Note that B= ) E2° and F= > EJ*
are graded subalgebras of E,.

2. Monogenic twisted polynomial algebras. A monogenic twisted
polynomial A-algebra of height h, 2Sh S «, and type t= (t,n,n) is a free
A-module generated by a sequence of elements xq, %1, + * -, x5 with
multiplication defined by

b nXmtn m < b,
(21) x,,.x,.={ ndm4- +n s
m=+n=h,
where the ¢.,. are nonzero elements of A which satisfy:
(2-2) lo,n = 1) tmo = 1,
(2.3) tm,n = tn,m,
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(2.4) tm.ntm-q-»,h = tm,n&-ktn.k-

From (2.3) and (2.4) follow commutativity and associativity re-
spectively; from (2.1) and (2.2) follows that xo=1. The powers x7* are
related to the generators x., as follows: Putting ¢t =#,x-1, (>0), then
by induction one proves

(2.5) . a1 = bils - -+ bmim.

We shall write x;=x and denote the algebra by 4 [x, &, ¢t]. In par-
ticular, if tn,n=1 for all m+4n <k then the algebra is the ordinary
(truncated) polynomial algebra of height 2 which we shall denote by
Alx, h]; evidently A[x, 2] is the exterior algebra As(x). If each
tm,» differs from the binomial coefficient (m, n)=m-+n!/m!n! by a
unit then the algebra will be said to be of binomial type.

A monogenic twisted A-algebra of binomial type is a free A-module
generated by a sequence of elements (xg, 1, %2, + - -+ ) with multiplica-
tion defined by

(2.6) X = (M, N)Xmgn.
It will be denoted by T 4(xo, %1, X2, + + -+ ). Since the binomial coeffi-
cients satisfy (2.2), (2.3), and (2.4), Ta(xo, X1, X2, - + + ) is associative,

commutative, and xo=1.
We note the following readily proved property of the binomial
coefficients (m, n) modulo a prime p:

(2.7 (m, n) = (mo, no)(my, ma) - - - (mj, nj),
where
(2.8) m=mo+mp+ -+ mip’, n=mno+mp+ .-+ np’,

1=,
are the p-adic expansions of m and %, and m,=0 if 2>1.
ProrosITION 1. (a) If A has characteristic zero then
(29) TA(xO) X1y X2yt ) = A[x’ @, t]'

(b) If A has characteristic prime p then there is an algebra isomor-
phism?
(2.10) ¢ Ta(wo, 01, 22, - -+ ) = ®izo Alayi, p, 1D],  tmn = (m, 1).
Proor. To prove (a) we need only note that (m, n) 0. (b) For each

120 define p elements ¥ =Xmpi, 0Sm<p. If 0Sm<pand 0Sn<p
then, using (2.6) and (2.7), we have

? By ®;,0is meant the “weak” tensor product.
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GIO) P
yﬂ: Yo = Zmpikngt = (MP, NP )Xminys® = (M, B)% (min)p'.
It is clear that (m, n)=0 if and only if m+n=p; hence
*
® O {("% 1) Ymin m+n<p,
Im In 0 m=+n = p.

Thus (2.1) is satisfied; the remaining conditions (2.3), (2.4), and (2.5)
are also satisfied as noted previously. Thus for each 7 we have a sub-
algebra A4 [y®, p, ] (of binomial type). It remains to show that
Ta(xo, %1, %3, - - - ) is isomorphic to their tensor product.
It follows from (2.6) and (2.7) that corresponding to the p-adic
expansion (2.8) for m, we may write x,, as a unique product
) © M 0)
¥m = Xme¥mip * ° * Fmip* = YmeYmy * Yy -
Therefore the correspondence defined by
0 6] 0]
(@m) = Yme @ Ym, @ * + * ® Ym,
establishes a module isomorphism (2.10). It remains to show that ¢
is multiplicative. Let (2.8) be the p-adic expansions of m and 7 (we
may assume 1 <j). Then, using (2.6) and (2.7),
(0 @), (0 %)
S (Xm)p(%2) = (Ymy @ -+ - ® Ymi ) (e ® + -+ ® yn;)
Q) )
(2.11) = (10, 10) = * * (M, 1) Ymgtno ® * * * ® Ymyns
) %)
= (M, M) Ymetng @ * * * @ Ymitn;.
We consider 2 cases:
(i) If (m, n)=0 mod p then ¢(xm)P(x.)=0. But also ¢(xnx,)
=¢(0) =0.
(ii) If (m, n) #0 mod p then none of the factors (m,, un,), 0 <r <7,
are zero and hence m,+n,<p for all . But then

m+n= (mo+ no) + (mi+ n)p+ - - - + (m; + n;)p7,
¢(Xmin) = yr(no«:fna ®: - ® y'(':;')-i-nj-
Thus (2.11) becomes
6 (Xm)p(xn) = (m, )¢ = ¢(%msn),
completing the proof of Proposition 1.
3. The main theorem.

THEOREM 1. Let (E,) be an initially decomposable acyclic canonical
spectral sequence of A-algebras. If B is a truncated polynomial algebra
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Alx, k] where x has even degree m=2, then

(3.1) F= Ay () ® Talzo, 22,20, -« * )

where z1E F and is of degree m —1 and 20, F and has degree i(hm —2).,
In view of Proposition 1 we have:
COROLLARY. (a) If in addition A has characteristic zero then

(3.2) F== A, (31) @ Alze, 0, ],

the second factor being of binomial type.
(b) If in addition A has prime characteristic p then

(33) F = AA (zl) ®izo A[Zzpt', 9, t(i)]’

each of the monogenic factors in the temsor product being of binomial
type.

Proor. The following is a trivial consequence of (1.5):

(3.4) E' =0 ifE"=0o0r E°=0 r=2).

We note further that the assumption on B gives

(3.5) B =0, i pEtm (1=0,1, -, h—1),

tm,0 0 lf t g h,

A-xt if 0=t <h,

(by A -x* we mean the free A-module generated by x*). We shall now
prove:
(37) E2=E3= =Em,
(3~7)I Etm+l = Etm+2 == E(t+l)m; 11 g 1,
3.7 Eg-ms1 = Eg—vymsz = - - - = Eq.

If pssm then, in view of (3.4) and (3.6), E}"=0 and hence
d,(E?*) =0. On the other hand, if p=sm but 7 is not a multiple of m
then

am,q,

d.(E.

) CEPTT <0
(the latter module is zero by (3.4) and (3.6) since sm+r7 is not a
multiple of m). Thus d,=0 if  is not a multiple of m and (3.7) and
(3.7) follow. If » = km then by (3.4) and (3.6), E?*"*""*' =0 and hence
d.(E?%) =0. Thus Epm=Eim41= - - - = E,. Combining this with(3.7)’
(taking t=h—1) gives (3.7)".
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REMARK. Using these results it will be possible to identify E}*
= E% for some values of ¢ and 7 (>2). When we write d.(x), where
uE€ EY?, such an identification will be implied.

For convenience put go=hm —2. We shall now prove:

A. If g0, m—1, modulo ¢y then E3?=0.

B. There exists a sequence of generators zo=1, 21, 22, - + +, 2j, * * *
for F such that

,Jgo+ (m—1)
3.8) ETTV = Aomg, dn(22j41) = w20,
(3.9 B = A, dn—1ym(22;) = 2395y,

(note the preceding remark).

The proof is by induction on ¢. Let §>0 and assume:

A; Statement A holds for all ¢ such that 0=¢<q.

Bz, We have chosen generators zo=1, 25; (0<jgo<§), and 2z11
(m—1=jgo+m—1<g) such that (3.8) and (3.9) hold.

Clearly A, and B, are trivial; it remains to prove Ag; and Bgp.
We shall first prove

(3.10) Eniy = En®

holds in the following cases:
(i) §=0 (mod qo), 1 =t <h—1.
(i) g=m—1 (mod qo), 1 <t=h—1.
(iii) ¢#£0, m—1 (mod ¢o), 1 St<h—1.
Consider

(3.11) 02, gl 2, g,
Since dindin=0, to prove (3.10) it suffices to show that the last
module in (3.11) is zero. If §—tm+1 <0 this is trivial; hence assume
g—tm—+1=20. We may write §=jgo+s, 0=s<qo.

1) If s=0 and 1=¢t<h—1 then J—tm+1=jgo—tm-+15£0,
m—1 (mod qo). Therefore it follows from A; and (3.4) that Eimi-im+!
=0.

(ii) s=m—1 and 1<t<h—1 then §—tm-+1=jgo+ (1 —£)m=#0,
m—1 (mod go). As in the preceding case we may conclude that
Eimi-imtl_

(iii) Suppose s#0, m—1 and 1=t=h—1. We have §—tm-+1
=s—tm—+1 (mod qo). If further s#tm—1, (¢+1)m—2, then §—tm
+1#£0, m—1 (mod ¢o), and as in the preceding two cases we may
conclude that the last module in (3.11) vanishes. It remains to con-
sider the two exceptional cases:

If s=tm—1, then §—tm-+1=7jg,. Consider the map
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(3.12) dp: E(t—l)m Jq0+m—1 R E'tnn;.jqo
Using (3.7) and (1.4) we have
(3.13) En7 = B = B RS

By hypothesis E3"°=4 -xt, and by Bz, E}"*=.4 2,;. It follows from
(3.13) that E™ =4 x'z; Similarly we may show E{ Vmito+m-1
=4 -x*"'25;;1. Now using the latter part of (3.8) we have

An(% 7 20j41) = (222541 + 27 (22511) = x'2s;.

Thus (3.12) is an isomorphism and Ej4%=0. It follows that the
last module in (3.11) is zero.

If s=0¢+1)m—2, then §—tm+1=jg+m—1. Since (3.12) is an
isomorphism we have that E&;7™%+*""'=0. The last module in
(3.11) is therefore zero. This completes the proof of (3.10).

ProOOF OF Agyi. Let ¢#0, m —1 (mod ¢o). Using (3.7), (3.7)’, (3.7)",
and (3.10) (case iii), we may write E3?= E% which is zero by acyclic-

ity.
Proor ofF Bg;i. We assert that the following maps are isomor-
phisms:
0.9 m,g~m+1 e = .
(3.14) dw: En, — E,, , if§=jpo+m—1;
~ (h=1)m,g— (h—1)m+1 e .
(3.15) d(h—1ym: E(h—l)m — E(h-1)m ! if ¢ = jqo.

Assuming this we may prove By, as follows: Let §=jgo+m—1:
then §—m+1=jgo<qd. By (3.9), therefore E3*®=A4-gz,;. Since also
E3®=A4 %, it follows from (1.4) that Ej"® =4 -xz,;. Using (3.7) we
may replace the subscript m by 2 in each module in (3.14). If we
therefore define z;41=d,, (x22;) then (3.8) holds for Bz;;. Now let
G =7jqo. Then

g—h—1m+1=Ggg—(—1m+1=G—Dg+m—1.
Since also §— (h—1)m-+1<§, we have by (3.8) E3i-®-bm+l— 4 .z, ..
By hypothesis, E{ ™=/ -x*~1; hence it follows from (1.4) that

(3.16) gy g

We assert that we may identify
(h=1)m,g—(h—1)m+1 (h=1)m,g—(h—1)m+1
E, .

3.17) -J;:f""-'; E(h—l)m =

To prove this let 1=t<h—1 and consider

(h—1—t)m,s dtm (h—1)m,g—(h—1)m+1 dtm (h=14-t)m,8

(3 . 18) Eem — Em — Eim
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where s and S are the appropriate integers. The last module is
evidently zero (by 3.4) since h—1+4+¢t=h. Also

s=d—Gh—-OUm+14+m—1=(G—Dg+ ¢+ )m— 2.

Evidently 0 < (¢41)m —2 <gqo and hence s <J. Moreover, it is readily
checked that (¢+1)m—25£0, m—1. The first module in (3.18) is
therefore zero in view of Az and (3.4). It follows that

(3.19)  EGpmTG-bmil | pO-bma-Gebetl b= 1.
Using (3.7), (3.7)", and (3.19), the identification (3.17) then follows.
We may also identify

1Jg0 0,720

(3.20) E’™ = B

using (3.7), (3.7)’, and (3.10) (case i). If we apply (3.17) and (3.20) in
(3.15) and define z5;=d,'(x*"23;1) we see that (3.9) holds for Bz

It remains to prove that (3.14) and (3.15) are isomorphisms. Let
d=jqo+m—1 and consider the sequence

m Am mise Om _2mjgemt1

(3.21) 0—2s Byt 2, g I, g

The last module is zero by (3.4) since by A; we have EJ#0—m+l—q
Thus to prove (3.14) an isomorphism it suffices to show that E3%, =
and Ep%=0. The former follows using (3.7)", (3.7)", (3.10) (case ii),
and acyclicity. To prove the latter consider the sequence

Gim _mige Btm _(t+Dm,jgp—tmi1

(3.22) 00— Em — Em , 1<t=h-1

If t=h—1 then E{*P"™%=0. If 1 <t<h—1 then jgo—tm+1#£0, m—1,
modulo g, and hence EJ@~™*1=( by A;. In either case the last
module in (3.22) is therefore zero by (3.4) and hence Ej;®=E}:* for
1 <t<h. Combining this with (3.7)’, (3.7)”, and acyclicity it follows
that Ep{%=0. Finally, let §=jgo and consider the sequence

dh—1ym 0,500 @ d ;
- ige Gh=Dm _ (h=1ym, (A=D)aotm—18 (h—1ym _2(h—1ym, (i=1) go+hm
(3.23)0—— E(p—-ym——E(h-1)m — Epym .

The last module is evidently zero since 2(k—1)m >hm. Moreover,
Ey 1 =0, EGpmidrbatm=1=0 by (3.7)" and acyclicity. Thus
(3.23) reduces to the isomorphism (3.15). This completes the induc-
tion and A and B are proved.

Using A and B we shall now prove the following multiplication rela-
tions:
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(3.24) 5 =0,
(3.25) 2122; = Z2j41,
(3.26) 2222 = (3, J)Z204+5)-

Note that 2} has degree 2m —2 and 2, has degree hm—2. Thus if
h>2, 5=0. If h=2 put zf =tz t€A4; then by (3.8) and (3.9) respec-
tively, we have

2 2
dn(21) = 221 — 512 = %3, — %31 = 0, dn(z1) = txz;.

Since xz; generates a free A-module, t =0 and (3.24) is established.
For j=0, (3.24) is trivial. Let j>0 and assume (3.25) for all 7’ <j.
Put 2120; =120511, ({EA); then using (3.8) we have

(3.27) An(2122)) = X225 — 210m(22)).

If =2 then using (3.9), the inductive assumption, and (3.24) in suc-
cession,

Zld,,.(.'hj) = Zl(x22j_1) = X2121X2j—2 = 0.

If >2, note that d,(z,;) ©Ep*~"*! which is zero by (3.4) and A.
In either case (3.27) reduces to d..(212;) =x2s;. But by (3.8),

dn(2122;) = 1dn(22j41) = 1x32;.

Since x2z,; generates a free A-module, t=1 and (3.25) is proved.
For i+j=0, (3.26) is trivial. Let 745>0 and assume (3.26) for all
' 4+7 <i4j. If we put 20:22;=1;,;%si+5), then using (3.9),
d (h—1ym(22:22;) = (2" '30;-1)29; + 22:(x"1205_1),
*"121(22i-080; + 22:%2i_2),
1z — 1,5) + (5 — Dlaziaios,

(2, 1) 2" 3254251

But also by (3.9),
dh-1ym(22:225) = tijda—1ym(Z2i4i)) = Li ¥ B2(i4)—1-

Since x"'zy,4jy1 generates a free A-module, ¢;,;= (3, 7).

The theorem now follows from (3.24), (3.25), and (3.26). For by
(3.24), 2 spans the subalgebra A 4(z1); by (3.26), the elements 2z; span
the subalgebras T4(zo, 22, 24, - - - ); and by (3.25), F is clearly iso-
morphic to the tensor product of the two subalgebras under the obvi-
ous map.

4. Topological applications. Let J denote a principal ideal domain
of characteristic p (p is then zero or a prime).
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THEOREM 2. Let X be a topological space whose singular cohomology
algebra H*(X, J)=J[x, k] where x is an element of even degree m= 2.
Let Q denote the loop space of X at a base point x,.

(@) H*Q, J)=A; (2) ® T[22, , t], if p=0, where 2, and 2 have
degree m—1 and hm—2, respectively, and the second factor is of bi-
nomaial type.

(b) H*(Q, J)=As (21) @izo0 I [2200, Py tP], if p is prime, where 2
and 23, have degrees m—1 and pi(hm—2) respectively, and each
is of binomial type.

Proor. Evidently X is arcwise connected, simply connected, and
torsion-free. Associated with the Serre fibering?® f: E—»X where E is
the space of paths beginning at x, (and  is the fibre at x,) is a canoni-
cal spectral sequence of J-algebras (E,) which is acyclic (since E is
contractible) and such that Ey'~H»(X, J)Q@H«(Q, J) (since X is a
torsion-free and J is a principal ideal domain). These isomorphisms
give an identification of the bigraded J-algebras, E,=H*(X, J)
®H*(Q, J). Since the spectral sequence is initially decomposable,
Theorem 2 follows immediately from Theorem 1 and its corollary.

Let P, and Q, denote the complex and quaternionic projective n-
spaces, 1 =n < «, respectively, and let C denote the Cayley plane.
Their cohomology algebras are known to be

H*(P,, J)=J[x, n+1], degree of x=2;

H*(Qn, J)=J[x, n+1], degree of x =4;

H*(C, J)=J|x, 3], degree of x=8.

Thus, Theorem 2 applies to P,, Qn, and C.
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