Linear completeness and hyperbolic trigonometry
Author:
Curtis M. Fulton
Journal:
Proc. Amer. Math. Soc. 9 (1958), 726-728
MSC:
Primary 50.00
DOI:
https://doi.org/10.1090/S0002-9939-1958-0102047-7
MathSciNet review:
0102047
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] R. Baldus and F. Löbell, Nichteuklidische Geometrie, Berlin, Dritte Aufl., 1953.
- [2] Howard Eves and V. E. Hoggatt Jr., Hyperbolic trigonometry derived from the Poincaré model, Amer. Math. Monthly 58 (1951), 469–474. MR 43475, https://doi.org/10.2307/2306925
- [3] David Hilbert, Grundlagen der Geometrie, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1956 (German). Achte Auflage, mit Revisionen und Ergänzungen von Dr. Paul Bernays. MR 0080308
- [4] G. Verriest, Introduction a la Géométrie non euclidienne, Paris, 1951.
- [5] Raymond L. Wilder, Introduction to the foundations of mathematics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1952. MR 0051198
- [6] H. E. Wolfe, Introduction to non-Euclidean geometry, New York, 1948.
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 50.00
Retrieve articles in all journals with MSC: 50.00
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1958-0102047-7
Article copyright:
© Copyright 1958
American Mathematical Society