A SUFFICIENT CONDITION THAT A MONOTONE IMAGE OF THE THREE-SPHERE BE A TOPOLOGICAL THREE-SPHERE

O. G. HARROLD, JR. 1

1. A continuous transformation of one space onto another is called monotone provided the complete inverse set for each point of the image space is connected. A monotone image of a circle is a simple closed curve or a point. A monotone image of a 2-sphere is a configuration known as a cactoid, i.e. a peano space in which every true cyclic element is a topological 2-sphere. R. L. Moore has shown that if a monotone transformation of a 2-sphere has the additional property that no inverse set separates the 2-sphere, then the image space is again a topological 2-sphere or a point [3]. In the case of the three-sphere, S^3, as one would expect, the situation is more complicated and extra conditions need to be imposed if the image space is to be expected to look like an S^3.

A recent example of R. H. Bing [1] shows that if a monotone transformation on S^3 has the property that for each point of the image the complement of the inverse image is an open 3-cell, the image may not be a topological S^3, thus answering a long standing conjecture. By studying this example and profiting by conversations with Professor Bing the author was led to the following theorem.

2. Theorem 1. Let $M = f(S^3)$, where f is a monotone, continuous map such that (i) if $Y = \{ y \in M | f^{-1}(y) \text{ does not reduce to a point} \}$, then given $y \in \overline{Y}$, and $\epsilon > 0$, there is a topological 2-sphere K in $S(y, \epsilon)$ separating y and $M \setminus S(y, \epsilon)$ such that K does not meet \overline{Y}. Then M is a topological 3-sphere.2

Proof. Let $\epsilon_1 > \epsilon_2 > \cdots \to 0$ and $\sum \epsilon_i < + \infty$. The set \overline{Y} is totally disconnected. Hence $\overline{Y} = Y_1 \cup \cdots \cup Y_n$ where Y_i is closed,3 $Y_i \cap Y_j = \emptyset$ and $\delta(Y_i) < \epsilon_i/4$. Suppose $\eta_i = \min \rho [Y_i, Y_j]$, $i \neq j$. De-

Presented to the Society June 21, 1958; received by the Editors March 21, 1958.

1 Fellow of the John Simon Guggenheim Memorial Foundation. Research also supported by the National Science Foundation, NSF, G-2793.

2 \overline{Y} = closure of Y.

3 $\delta(Y)$ represents the diameter of Y, $S(y, \epsilon)$ is the set of points each of whose distance from y is less than ϵ. The symbol ρ represents the metric of the space concerned. It will be clear whether ρ refers to M or S^3 by noting in which space the sets are given.

If K is a topological 2-sphere in $M \setminus \overline{Y}$, the complement of \overline{Y} in M, $\text{Int } K = f[\text{Int } f^{-1}(K)]$.

846
fine $\epsilon' = \min \left(\epsilon_i/4, \eta_i/3 \right)$. A finite number of topological 2-spheres K'_1, \cdots, K'_{m_1} are found, by use of (i), such that for $i = 1, \cdots, m_1$,

\begin{enumerate}
 \item $\delta(K'_i) < \epsilon'$;
 \item $\cup \text{Int } K'_i \supset \overline{Y}$;
 \item $K'_i \cap \overline{Y} = \emptyset$.
\end{enumerate}

The first set of operations is designed to replace the spheres K'_1, \cdots, K'_{m_1} by a set $\tilde{K}'_1, \cdots, \tilde{K}'_{m_1}$ that enjoy properties similar to (1), (2), (3) and the further requirement

\begin{enumerate}
 \item[(4)] $\tilde{K}'_i \cap \tilde{K}'_j = \emptyset$, \quad $i \neq j$.
\end{enumerate}

The set of spheres $\tilde{K}'_1, \cdots, \tilde{K}'_{m_1}$ may be found as follows. Since \(f^{-1} \) is topological on K'_i, $L_i = f^{-1}(K'_i)$ is a topological 2-sphere. Since $\rho[L_i, f^{-1}\overline{Y}] > 0$, we may apply the Bing approximation theorem [2] to find a polyhedral 2-sphere P_i as near L_i as we please so that P_i contains in its interior precisely those components of $f^{-1}\overline{Y}$ that are interior to L_i. By doing this for each i, we obtain a set of polyhedral 2-spheres

\[P_1, \cdots, P_{m_1}. \]

It may be supposed further that $P_i \cap \overline{P}_j$ is a finite collection (possibly null) of pairwise disjoint simple closed curves, none of which may be removed by an arbitrarily small deformation of P_i or P_j. In addition,

\begin{enumerate}
 \item[$(2')$] $\cup \text{Int } P_i \supset f^{-1}(\overline{Y})$.
 \item[$(3')$] $P_i \cap f^{-1}(\overline{Y}) = \emptyset$.
\end{enumerate}

We first describe how to find a set of polyhedral 2-spheres $\tilde{P}_1, \cdots, \tilde{P}_{m_1}$ such that conditions $(2')$, $(3')$ and the following hold

\begin{enumerate}
 \item[$(4')$] $\tilde{P}_i \cap \tilde{P}_j = \emptyset$.
\end{enumerate}

Suppose C_1, \cdots, C_q are the components of $P_1 \cap P_2$. If $q = 1$, let C_1 divide P_1 into U_1, V_1 and C_1 divide P_2 into U_2, V_2. Then P_1 and the closure of the component (V_2 say) of $P_2 \setminus C_1$ in the exterior of P_1 together with the appropriate disk (U_1 or V_1) gives a pair of 2-spheres P_1, P'_2 that covers the same part of $f^{-1}(\overline{Y})$ that $P_1 \cup P_2$ does, neither P_1 nor P'_2 meets $f^{-1}(\overline{Y})$ and, by a slight deformation $P_1 \cap P'_2 = \emptyset$.

If $q > 1$, at least one of C_1, \cdots, C_q, say C_1, will not separate C_2, \cdots, C_q on P_1. (Of course C_1 may separate C_2, \cdots, C_q on P_2, but that is irrelevant.) By replacing P_2 by 2 new polyhedral 2-spheres meeting along a disk on P_1, we again have covered the same part of
$f^{-1}(\overline{V})$ and by a pair of slight deformations obtain 3 polyhedral 2-spheres

$$P_1, P'_2, P''_2$$

such that the number of components of $P_1 \cap P'_2$ or $P_1 \cap P''_2$ is less than q.

Continuing, we obtain, after a finite number of such operations a collection of polyhedral 2-spheres

$$\bar{P}_1, \ldots, \bar{P}_{p_1}$$

such that

(2'') $\bigcup \text{Int } \bar{P}_i \supseteq f^{-1}(\overline{V})$.

(3'') $\bar{P}_i \cap f^{-1}(\overline{V}) = \emptyset$.

(4'') $\bar{P}_i \cap \bar{P}_j = \emptyset, \ i \neq j$.

Define $\bar{K}_i = f(\bar{P}_i)$. We note that under the steps made in forming \bar{P}_i, or, correspondingly, \bar{K}_i, that the diameters of the spheres replacing K_j may be greater than that of K_j. However, since $\varepsilon'_1 < \eta_1(1/3)$, the definition of η_1 and the triangle inequality show that $\delta(\bar{K}_i) < 3\varepsilon_1/4 < \varepsilon_1$. Hence $\bar{K}_1, \ldots, \bar{K}_{p_1}$ satisfy

(1) $\delta(K_i) < \varepsilon_1$;

(2) $\bigcup \text{Int } K'_i \supseteq \overline{V}$;

(3) $\bar{K}_i \cap \overline{V} = \emptyset$;

(4) $\bar{K}_i \cap \bar{K}_j = \emptyset, \ i \neq j$.

To $\varepsilon_2 > 0$, write $Y_i = Y_{i,1} \cup \cdots \cup Y_{i,n_2}$, where $Y_{i,j}$ is closed, $Y_{i,j} \cap Y_{i,j'} = \emptyset$ and $\delta(Y_{i,j}) < \varepsilon_2/4$. Put

$$\eta_2 = \min \rho[Y_{i,j}, Y_{i',j'}], \rho \left[Y_{i,j}, \bigcup_{i=1}^{n_1} \bar{K}_i \right].$$

Let $\varepsilon'_2 < \varepsilon_2/4, \eta_2/3$. By the hypotheses (i) there is a finite collection of topological 2-spheres in $M, K^2_1, \ldots, K^2_{m_2}$ such that

(1) $\delta(K^2_i) < \varepsilon'_2$:

(2) $\bigcup \text{Int } K^2_i \supseteq \overline{V}$:

(3) $K^2_i \cap \overline{V} = \emptyset$.

By the choice of ε'_2, $K^2_i \cap \bar{K}^2_j = \emptyset$. By modifications of the $K^2_1, \ldots, K^2_{m_2}$ precisely as above at the first stage we arrive at another set of spheres $\bar{K}^2_1, \ldots, \bar{K}^2_{p_2}$ such that
The general step is now clear. To $\varepsilon > 0$ we find a finite set of topological 2-spheres K_1, \ldots, K_p such that

\begin{align*}
(1) & \quad \delta(K_i) < \varepsilon, \\
(2) & \quad \bigcup_{i=1}^{p} \text{Int } K_i \supset \bar{Y}, \\
(3) & \quad K_i \cap \bar{Y} = \emptyset, \\
(4) & \quad K_i \cap K_j = \emptyset, \quad i \neq j \\
(5) & \quad K_i \cap K_j = \emptyset.
\end{align*}

3. Let F_1', \ldots, F_p' be p_1 disjoint cubes (topological 2-spheres) with centers on the x-axis and faces parallel to the co-ordinate planes. We take the cubes congruent to one another for convenience. Let F_1^2, \ldots, F_p^2 be a similar set of cubes of smaller size so that

\[F_i^2 \subset \text{Int } F_i' \]

if and only if

\[K_i^2 \subset \text{Int } K_i'. \]

Continuing, for each n we have

\[F_1^n, \ldots, F_p^n \]

a collection of pairwise disjoint cubes so that

\[F_i^n \subset \text{Int } F_i^{n-1} \]

if and only if

\[K_i^n \subset \text{Int } K_i^{n-1}. \]

Without loss we may require that $\delta(F_i^n) < 1/n$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The following lemma is stated without proof.

Lemma. If Q_1, \ldots, Q_n are disjoint polyhedral 2-spheres in S^3, no one interior to any other, and if Q_0 is a large polyhedral cube containing Q_1, \ldots, Q_n in its interior, the closed domain bounded by Q_0, Q_1, \ldots, Q_n is tame. Further, any two domains so formed in this way are homeomorphic.

4. Let P^0 be a large cube in S^3 containing P_1, \ldots, P_{p_1} in its interior. Then $K^0 = f(P^0)$ is a 2-sphere in M containing K'_1, \ldots, K'_{p_1} in its interior. Let M_0 be the region in M exterior to K^0. Then M_0 is homeomorphic to $S^3 \setminus \text{Int } P^0$ under f^{-1}. Hence there is a homeomorphism h_0 from M_0 to $S^3 \setminus \text{Int } F_0$. Let $M_1 = \text{region in } M \text{ bounded by } K^0 \cup \bigcup_{i=1}^{p_1} K'_i$. Then, by the lemma, M_1 is homeomorphic to the region in S^3 bounded by $P^0 \cup \bigcup_{i=1}^{p_1} F'_i$. Let h_1 be a homeomorphic extension of h_0 from $M_0 \cup M_1$ to $M_0 \cup M_1$. The next step is similar, except that M_2 is a union of a finite number of regions bounded by the sets

$$
\bigcup_{i=1}^{p_1} K'_i \cup \bigcup_{i=1}^{p_2} K'_i.
$$

However, these regions are in 1-1 correspondence with the number of regions bounded by

$$
\bigcup_{i=1}^{p_1} F'_i \cup \bigcup_{i=1}^{p_2} F'_i,
$$

hence, by the lemma, the extension of h_1 from $M_0 \cup M_1 \cup M_2$ can be carried out.

Continuing, a sequence of homeomorphisms h_0, h_1, h_2, \ldots is defined so that each is an extension of the preceding and $h(x) = h_n(x)$ maps $M \setminus \overline{V}$ homeomorphically onto the complement of a Cantor set X in S^3.

Since nested sequences of connected sets in $M \setminus \overline{V}$ correspond to nested sequences of connected sets in $S^3 \setminus X$, it is easy to see that h and h^{-1} are both uniformly continuous, hence the extension \tilde{h} of h carries M homeomorphically onto S^3.

References

1. R. H. Bing, *A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3*, Ann. of Math. vol. 65, no. 3 (1957) pp. 484-500.
