Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On completely continuous Hankel matrices
HTML articles powered by AMS MathViewer

by Philip Hartman
Proc. Amer. Math. Soc. 9 (1958), 862-866
DOI: https://doi.org/10.1090/S0002-9939-1958-0108684-8
References
    C. Carathéodory and L. Fejér, Ueber den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landauschen Satz, Rendiconti del Circolo Matematico di Palermo vol. 32 (1911) pp. 218-239. E. Fischer, Ueber das Carathéodorysche Problem, Potenzreihen mit positiven reellen Teil betreffen, ibid., pp. 240-256.
  • T. H. Gronwall, On the maximum modulus of an analytic function, Ann. of Math. (2) 16 (1914/15), no. 1-4, 77–81. MR 1502491, DOI 10.2307/1968045
  • Philip Hartman and Aurel Wintner, On the spectra of Toeplitz’s matrices, Amer. J. Math. 72 (1950), 359–366. MR 36936, DOI 10.2307/2372039
  • Zeev Nehari, On bounded bilinear forms, Ann. of Math. (2) 65 (1957), 153–162. MR 82945, DOI 10.2307/1969670
  • O. Toeplitz, Zur Theorie der quadratischen Formen von unendlich vielen Veränderlichen, Göttingen Nachrichten, 1910, pp. 489-506.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42.00, 46.00
  • Retrieve articles in all journals with MSC: 42.00, 46.00
Bibliographic Information
  • © Copyright 1958 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 9 (1958), 862-866
  • MSC: Primary 42.00; Secondary 46.00
  • DOI: https://doi.org/10.1090/S0002-9939-1958-0108684-8
  • MathSciNet review: 0108684