On primary ideals in $C(X)$
HTML articles powered by AMS MathViewer
- by J. G. Horne
- Proc. Amer. Math. Soc. 10 (1959), 158-163
- DOI: https://doi.org/10.1090/S0002-9939-1959-0104144-X
- PDF | Request permission
References
- Frank W. Anderson, A lattice characterization of completely regular $G_\delta$-spaces, Proc. Amer. Math. Soc. 6 (1955), 757–765. MR 72451, DOI 10.1090/S0002-9939-1955-0072451-1
- Leonard Gillman and Melvin Henriksen, Concerning rings of continuous functions, Trans. Amer. Math. Soc. 77 (1954), 340–362. MR 63646, DOI 10.1090/S0002-9947-1954-0063646-5
- Edwin Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45–99. MR 26239, DOI 10.1090/S0002-9947-1948-0026239-9
- J. G. Horne Jr., On the ideal structure of certain semirings and compactification of topological spaces, Trans. Amer. Math. Soc. 90 (1959), 408–430. MR 108714, DOI 10.1090/S0002-9947-1959-0108714-9
- J. G. Horne Jr., On $O_{\omega }$-ideals in $C(X)$, Proc. Amer. Math. Soc. 9 (1958), 511–518. MR 102734, DOI 10.1090/S0002-9939-1958-0102734-0 C. W. Kohls, Prime ideals in $C(X)$, to appear.
- A. N. Milgram, Multiplicative semigroups of continuous functions, Duke Math. J. 16 (1949), 377–383. MR 29476, DOI 10.1215/S0012-7094-49-01638-5
- Lyle E. Pursell, An algebraic characterization of fixed ideals in certain function rings, Pacific J. Math. 5 (1955), 963–969. MR 83478, DOI 10.2140/pjm.1955.5.963
Bibliographic Information
- © Copyright 1959 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 10 (1959), 158-163
- MSC: Primary 46.00
- DOI: https://doi.org/10.1090/S0002-9939-1959-0104144-X
- MathSciNet review: 0104144