A MAXIMUM MODULUS PROPERTY OF MAXIMAL SUBALGEBRAS

PAUL CIVIN

In a recent paper [6] Wermer considered the algebra C of all continuous complex valued functions on γ, a simple closed analytic curve bounding a region Γ, with $\Gamma \cup \gamma$ compact, on a Riemann surface F. He considered the subalgebra A of all functions in C which could be extended into Γ to be analytic on Γ and continuous on $\Gamma \cup \gamma$. Wermer showed that A was a maximal closed subalgebra of C which separated the points of γ, and that the space of maximal ideals of A was homeomorphic to $\Gamma \cup \gamma$.

In [2] Civin and Yood considered a class of subalgebras of complex commutative regular Banach algebras which become maximal closed subalgebras in the event the original algebra was the collection of continuous functions on a compact Hausdorff space. The object of this note is to demonstrate that such subalgebras possess a maximum modulus property possessed by A. To state the result obtained we recall certain definitions. The terms not herein defined may be found in [5].

Let B be a complex commutative regular Banach algebra with identity e and space of maximal ideals $\mathcal{M}(B)$. Let $\pi: x \rightarrow x(M)$ be the Gelfand representation of B as a subalgebra of $C(\mathcal{M}(B))$, the continuous function on $\mathcal{M}(B)$. We also denote πx by \hat{x} and πQ by \hat{Q} for any subset Q of B. A subalgebra N of B is called determining [2] if πN is dense in πB, otherwise N is called nondetermining. A subalgebra of B is called a maximal nondetermining subalgebra if every larger subalgebra of B is determining. A subset S of B is called a separating family on $\mathcal{M}(B)$ if for each M_1, M_2 in $\mathcal{M}(B)$, $M_1 \neq M_2$, there exists an $x \in S$ such that $x(M_1) \neq x(M_2)$. If P is an algebra of continuous complex valued functions vanishing at infinity on the locally compact space X, the smallest closed set (if it exists) on which each $|f|$ with $f \in P$ assumes its maximum is called the Silov boundary of X with respect to P.

Theorem 1. Let B be a complex commutative regular Banach algebra with identity e, and let N be a maximal nondetermining subalgebra of

Presented to the Society, April 20, 1957; received by the editors October 16, 1958.

1 This work was supported in part by the National Science Foundation research grant NSF—G 2573.
B which is not a maximal ideal. If N is a separating family on $\mathcal{M}(B)$, then $\mathcal{M}(B)$ may be topologically embedded if $\mathcal{M}(N)$ and as so embedded $\mathcal{M}(B)$ is the Silov boundary of $\mathcal{M}(N)$ with respect to N.

While the present note was in the process of publication, two proofs of Theorem 1 appeared for the special case when $B = C(X)$ for a compact Hausdorff space X, one by H. S. Bear [1] and the other by K. Hoffman and I. M. Singer [4].

Before proceeding to the proof of the theorem, we require one lemma, which was noted by Helson and Quigley [3] for the case $B = C(X)$.

Lemma 2. Let N be a maximal nondetermining subalgebra of the complex commutative regular Banach algebra B, and let e be the identity of B. Then either $e \in N$ or N is a maximal ideal of B.

Suppose $e \in N$. Let $D = \{a + \lambda e : a \in N$ and λ complex $\}$. As e is the unit for B, D is a subalgebra of B which properly contains N, hence \hat{D} is dense in \hat{B}. Let $x \in B$ and $a \in N$. There exists $a_n \in N$ and λ_n complex, $n = 1, 2, \ldots$, such that $\pi(a_n + \lambda_n e) \to \pi x$ as in $n \to \infty$. Therefore $(a_n + \lambda_n e)a \in N$ and $\pi \{(a_n + \lambda_n e)a\} \to \pi(xa)$. By Lemma 1 of [2], \hat{N} is closed in \hat{B}, so $\pi(xa) \in \hat{N}$. There thus exists $u \in N$ such that $xa - u$ is in the radical of B. As noted in [2], N contains the radical of B. Thus $xa \notin N$ and N is an ideal of B. That N is a maximal ideal is an immediate consequence of N being maximal nondetermining.

We return to the proof of Theorem 1. Each nonzero multiplicative linear functional on B is automatically one on N, and distinct multiplicative linear functionals on B have distinct restrictions to N since N is a separating family on $\mathcal{M}(B)$. There is thus a one-to-one correspondence between $\mathcal{M}(B)$ and a subset of $\mathcal{M}(N)$. The mapping is clearly continuous from $\mathcal{M}(B)$ to $\mathcal{M}(N)$ in the Gelfand topologies. As $\mathcal{M}(B)$ is a compact Hausdorff space, the mapping is a homeomorphism. We henceforth suppose $\mathcal{M}(B)$ is a subset of $\mathcal{M}(N)$.

Since N is a subalgebra of B, $\lim ||a^n||^{1/n}$ is independent of whether the N or B norm is used. Thus sup $|a(M)|$ is the same whether calculated over $\mathcal{M}(B)$ or $\mathcal{M}(N)$. To see that $\mathcal{M}(B)$ is the Silov boundary of $\mathcal{M}(N)$ with respect to N, it is sufficient to see that there is no proper closed subset of $\mathcal{M}(B)$ on which each $|a(M)|$, $a \in N$, attains its maximum. Suppose otherwise and let \mathcal{K} be a proper closed subset of $\mathcal{M}(B)$ of the required type.

Let $M \in \mathcal{M}(B)$, $M \in \mathcal{K}$. If \mathcal{L} is any closed set in $\mathcal{M}(B)$ such that $\mathcal{L} \supseteq \mathcal{K}$ and $M_0 \in \mathcal{L}$, let \mathcal{B} be an open set in $\mathcal{M}(B)$ with $M_0 \in \mathcal{B}$ and $\overline{\mathcal{B}} \cap \mathcal{L} = \overline{\mathcal{L}}$, the closure being in $\mathcal{M}(B)$. Let $W = W(\mathcal{L})$ be the kernel of \mathcal{L}, i.e. $W = \cap M, M \in \mathcal{L}$. Let R be the radical of B. Since B is a regular
Banach algebra, W contains elements not in R. Consider the algebra $S=N+W$. The elements of S are of the form $a+u$, $a\in N$, $u\in W$, since W is an ideal of B. For $u\in W$, $u\in R$, the maximum modulus of $u(M)$ is not attained on \mathcal{A}, so $u\notin N$, and thus S contains N properly. As N was maximal nondetermining, S is dense in B.

Let $b\in B$. There exists $a_n\in N$, $u_n\in W$, $n=1, 2, \ldots$, so that if $r_n=a_n+u_n$, then $r_n\to b$. For $M\in \mathcal{A}$, $|a_n(M)-a_m(M)|=|r_n(M)-r_m(M)|$. Thus

$$\sup_{M\in \mathcal{A}} |a_n(M)-a_m(M)| \leq \sup_{M\in \mathcal{A}(B)} |r_n(M)-r_m(M)|.$$

By the maximum modulus property of N relative to $\mathcal{A}\subset \mathcal{A}$,

$$\sup_{M\in \mathcal{A}(B)} |a_n(M)-a_m(M)| \leq \sup_{M\in \mathcal{A}(B)} |r_n(M)-r_m(M)|.$$

Since N is closed [2], there exists $a_0\in N$ such that $a_n\to a_0$. There is then an element $w_0\in W$ such that $a_n\to w_0$. If $b_0=a_0+w_0$, $r_n\to b$ and $r_n\to b_0$, and consequently $b-b_0=0$ and $b-b_0\in R$. As noted in [2], $R\subset N$, so $b-b_0\in N$. Since b was arbitrary, $B=N+W=N+W(\mathcal{A})$.

We next show the complement of \mathcal{A} in $\mathcal{M}(B)$ consists of a single point. Suppose otherwise. Let $M_i\in \mathcal{M}(B)$, $M_i\in \mathcal{A}$, $i=1, 2$, and $M_1\neq M_2$. Let \mathcal{A} be a closed set in $\mathcal{M}(B)$, such that $\{M_1\} \cup \mathcal{A} \subset \mathcal{A}$ and $M_2\in \mathcal{A}$. Since B is a regular Banach algebra, there is an element $b\in B$, such that $b(M)=0$, $M\in \mathcal{A}$, and $b(M_1)=1$. We may express b as $b=a+u$, $a\in N$, $u\in W(\mathcal{A})$. For $M\in \mathcal{A}$, $0=b(M)=a(M)+u(M)$. Since $u(M)=0$ for $M\in \mathcal{A}$, $a(M)=0$ for $M\in \mathcal{A}$. However, $1=b(M_1)=a(M_1)+u(M_1)=a(M_1)$ since $M_1\in \mathcal{A}$. This contradicts the supposition that for $a\in N$,

$$\sup_{M\in \mathcal{A}} |a(M)| = \sup_{M\in \mathcal{A}(B)} |a(M)|.$$

Thus $\mathcal{M}(B)=\mathcal{A}\cup \{M_0\}$, and since \mathcal{A} was closed in $\mathcal{M}(B)$, M_0 is an isolated point of $\mathcal{M}(B)$.

Let $W=W(\mathcal{A})=\{f\in B| f(\mathcal{A})=0\}$. Consider any element $b+W$ of B/W. Since $b=a+u$, with $a\in N$, $u\in W$, there is an element a of N in the coset $b+W$. Now $R\subset W$, so all elements of the coset $a+R$ of N/R are in the coset $b+W$. Moreover if $a_i\in b+W$, and $a_i\in N$, $i=1, 2$, then $a_1-a_2\in W$ so by the maximum modulus property that \mathcal{A} is alleged to have $a_1-a_2=0$ and $a_1-a_2\in R$. There is thus a one-to-one correspondence between the cosets $b+W$ and $a+R$. The corresponding gives an isomorphism of B/W and N/R.

Let $N_1=\{a\in N| a(M_0)=0\}$. Then N_1 is a maximal ideal of N which contains R and thus N_1/R is a maximal ideal of N/R. The iso-
morphism obtained above implies the existence of a maximal ideal M_i in B, $M_i \supset W$ and with M_1/W isomorphic to N_1/R. Since $M_1 \supset W$, $M_1 \neq M_0$.

Let $a \in N_1$, so $a(M_0) = 0$. Then $a(M_1) = 0$ because of the inclusion of the coset $a + R$ in the coset $a + W$. Similarly, if $a \in N \setminus M_1$, then $a \in M_0$. Lemma 2 implies that for arbitrary $a \in N$, there is a constant λ such that $a - \lambda e \in N_1$. But then $a(M_0) - \lambda = a(M_1) - \lambda$ and N does not separate the points of $\mathcal{M}(B)$. This contradiction completes the proof of the theorem.

Bibliography

University of Oregon