Representation theorems for certain Boolean algebras
HTML articles powered by AMS MathViewer
- by R. S. Pierce
- Proc. Amer. Math. Soc. 10 (1959), 42-50
- DOI: https://doi.org/10.1090/S0002-9939-1959-0106862-6
- PDF | Request permission
References
- Garrett Birkhoff, Lattice Theory, Revised edition, American Mathematical Society Colloquium Publications, Vol. 25, American Mathematical Society, New York, N. Y., 1948. MR 0029876
- C. C. Chang, On the representation of $\alpha$-complete Boolean algebras, Trans. Amer. Math. Soc. 85 (1957), 208–218. MR 86792, DOI 10.1090/S0002-9947-1957-0086792-1
- L. H. Loomis, On the representation of $\sigma$-complete Boolean algebras, Bull. Amer. Math. Soc. 53 (1947), 757–760. MR 0021084, DOI 10.1090/S0002-9904-1947-08866-2 D. Scott and A. Tarski, Metamathematical proofs of some Boolean representation theorems, (to appear).
- Roman Sikorski, A theorem on the structure of homomorphisms, Fund. Math. 36 (1949), 245–247. MR 36229, DOI 10.4064/fm-36-1-245-247
- Edgar C. Smith Jr., A distributivity condition for Boolean algebras, Ann. of Math. (2) 64 (1956), 551–561. MR 86047, DOI 10.2307/1969602
- E. C. Smith Jr. and Alfred Tarski, Higher degrees of distributivity and completeness in Boolean algebras, Trans. Amer. Math. Soc. 84 (1957), 230–257. MR 84466, DOI 10.1090/S0002-9947-1957-0084466-4
- M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375–481. MR 1501905, DOI 10.1090/S0002-9947-1937-1501905-7
Bibliographic Information
- © Copyright 1959 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 10 (1959), 42-50
- MSC: Primary 06.00
- DOI: https://doi.org/10.1090/S0002-9939-1959-0106862-6
- MathSciNet review: 0106862