A COMPARISON THEOREM FOR ELLIPTIC EQUATIONS

M. H. PROTTER

Hartman and Wintner [1] obtained a Sturmian comparison theorem for self-adjoint second order linear elliptic equations of the form

\[\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) + f u = 0, \quad a_{ij} = a_{ji} \]

in a bounded domain \(D \) with boundary \(\Gamma \). It is the purpose of this note to extend their result to general second order linear elliptic equations. Let \(v \) be a solution of another elliptic equation of the same form

\[\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(\alpha_{ij} \frac{\partial v}{\partial x_j} \right) + F v = 0, \quad \alpha_{ij} = \alpha_{ji} \]

and denote the elements of the inverse matrices by \(a^{ij} \) and \(\alpha^{ij} \) respectively.

Let \(u(x) = u(x_1, \ldots, x_n) \) be a solution of (1) which is nonnegative in \(D \) and vanishes on \(\Gamma \). We exclude the trivial case \(u \equiv 0 \). Suppose that the coefficients of (1) and (2) satisfy the relations

\[\| \alpha^{ij} - a^{ij} \| \text{ is non-negative definite in } D, \]

\[f \leq F \text{ in } D. \]

The theorem of Hartman and Wintner states that if (3) and (4) hold then any solution of (2) must have a zero in \(D + \Gamma \).

We now consider in \(D \) two general linear elliptic equations of the form

\[\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) + \sum_{i=1}^{n} b_i \frac{\partial u}{\partial x_i} + f u = 0, \quad a_{ij} = a_{ji}, \]

\[\sum_{i,j=1}^{n} \frac{\partial}{\partial x_i} \left(\alpha_{ij} \frac{\partial v}{\partial x_j} \right) + \sum_{i=1}^{n} \beta_i \frac{\partial v}{\partial x_i} + F v = 0, \quad \alpha_{ij} = \alpha_{ji}, \]

and determine conditions on the coefficients so that a Sturmian comparison theorem shall be valid. For simplicity we consider the case of two independent variables, the result in more than two vari-

Received by the editors July 26, 1958.

1 This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command under Contract No. AF 49(638)-398.
ables being a straightforward extension. That is, we consider the equations

\begin{align*}
(7) \quad & L_1u \equiv (au_x)_x + (bu_x)_y + (bu_y)_x + (cu_y)_y \\
& + 2du_x + 2eu_y + fu = 0, \\
& L_2v \equiv (av_x)_x + (bv_x)_y + (bv_y)_x + (cv_y)_y \\
& + 2dv_x + 2ev_y + Fv = 0.
\end{align*}

An application of Green's theorem to (7) for a function \(u \) which vanishes on \(\Gamma \) yields

\[- \iint_D uL_1udxdy = \iint_D \left[au_x^2 + 2bu_xu_y + cu_y^2 - 2duu_x - 2euu_y - fu^2 \right]dxdy.\]

We now employ a device of Picard \([3]\) extended by Hartman and Wintner \([1]\). The same technique was also used by Ou and Ding \([2]\) and the author in connection with certain problems in equations of mixed type. Let \(P \) and \(Q \) be arbitrary smooth functions in \(D \). Then for any function \(u \) vanishing on \(\Gamma \) we have

\[\iint_D \left[\frac{\partial}{\partial x} (Pu^2) + \frac{\partial}{\partial y} (Qu^2) \right]dxdy = 0.\]

Thus if in addition \(u \) is a solution of (7) we find

\[\iint_D \left[au_x^2 + 2bu_xu_y + cu_y^2 + 2(P - d)uu_x \\
+ 2(Q - e)uu_y + (P_x + Q_y - f)u^2 \right]dxdy = 0.
\]

The condition that the integrand be a positive semi-definite form in \(u, u_x, u_y \) is

\[(ac - b^2)(P_x + Q_y - f) \geq a(Q - e)^2 - 2b(P - d)(Q - e) + c(P - d)^2. \]

Define

\[P = \frac{-\alpha v_x - \beta v_y}{v} + d - \xi, \quad Q = \frac{-\beta v_x - \gamma v_y}{v} + e - \eta \]

where \(v \) is a positive solution of (8) and \(\xi, \eta \) are functions yet to be determined. Substitution for \(P \) and \(Q \) in (10) yields the expression
\[(ac - b^2)(\alpha v_x^2 + 2\beta v_x v_y + \gamma v_y^2)\]
\[+ (ac - b^2)v[2\delta v_x + 2\epsilon v_y + (F - f - \xi_x - \eta_y + d_x + e_y)v]\]
\[\geq (a\beta^2 - 2b\alpha\beta + c\alpha^2)v_x^2 + 2(a\beta\gamma - b\beta^2 - b\alpha\gamma + c\alpha\beta)v_x v_y\]
\[+ (a\gamma^2 - 2b\beta\gamma + c\beta^2)v_y^2 + 2(a\gamma\eta + c\alpha\xi - b\alpha\eta - b\beta\xi)v_x v_y\]
\[+ 2(a\gamma\xi + c\beta\xi - b\beta\eta - b\gamma\xi)v_x v_y + (a\eta^2 - 2b\xi\eta + c\xi^2)v^2.\]

We now investigate conditions on the coefficients of (7) and (8) which will make the above inequality hold throughout \(D\). This will contradict (9) and hence \(v\) must have a zero in \(D\). If condition (3) is satisfied, which in this case becomes

\[(a - a)(c - \gamma) - (b - \beta)^2 \geq 0,\]

then (11) will be a consequence of the inequality

\[(ac - b^2)v[2\delta v_x + 2\epsilon v_y + (F - f - \xi_x - \eta_y + d_x + e_y)v]\]
\[\geq 2(a\beta\eta + c\alpha\xi - b\alpha\eta - b\beta\xi)v_x v_y\]
\[+ 2(a\gamma\eta + c\beta\xi - b\beta\eta - b\gamma\xi)v_x v_y + (a\eta^2 - 2b\xi\eta + c\xi^2)v^2.\]

We select \(\xi, \eta\) to be solutions of the linear equations

\[(a\beta - b\alpha)\eta + (c\alpha - b\beta)\xi = - \delta(ac - b^2),\]
\[(a\gamma - b\beta)\eta + (c\beta - b\gamma)\xi = - \epsilon(ac - b^2).\]

That this is always possible follows from the ellipticity of the operators \(L_1\) and \(L_2\). Hence (11) is now a consequence of

\[(ac - b^2)(F - f - \xi_x - \eta_y + d_x + e_y) - (a\eta^2 - 2b\xi\eta + c\xi^2) \geq 0.\]

We therefore have the result: if the coefficients of (7) and (8) satisfy relations (12) and (13) and if there is a non-negative solution of (7), not identically zero, which vanishes on \(\Gamma\), then every solution of (8) must have a zero in \(D + \Gamma\).

In the special case \(\delta = \epsilon \equiv 0\) we have \(\xi = \eta \equiv 0\) and condition (13) becomes

\[F - f + d_x + e_y \geq 0.\]

This is particularly useful if a comparison is desired between a general linear second order equation and the equation

\[\Delta u + mu = 0\]

\(m\) a constant. Then we have the conditions
$a > 1, \quad (a - 1)(c - 1) - b^2 \geq 0$,
$m \geq -d_x - e_y + f$.

Of course a more general relation between the coefficients, sufficient to yield the conclusion of the theorem, can be obtained by imposing the condition that (11) be a positive semi-definite form in v, v_x, v_y.

BIBLIOGRAPHY

UNIVERSITY OF CALIFORNIA, BERKELEY