NOTE ON A THEOREM OF FUGLEDE AND PUTNAM

S. K. BERBERIAN

1. An involution in a ring \(A \) is a mapping \(a \rightarrow a^* \) \((a \in A)\) such that \(a^{**} = a \), \((a + b)^* = a^* + b^*\), \((ab)^* = b^*a^*\). An element \(a \in A \) is (1) normal if \(a^*a = aa^* \), (2) self-adjoint if \(a^* = a \), (3) unitary if \(a^*a = a^*a = 1 \) \((1 = \text{unity element of } A)\). We say that "Fuglede's theorem holds in \(A \)" in case the relations \(a \in A \), \(a \) normal, \(b \in A \), \(ba = ab \), imply \(ba^* = a^*b \); briefly, \(A \) is an FT-ring.

It follows from a theorem of B. Fuglede that the ring \(A \) of all bounded operators in a Hilbert space (hence any adjoint-containing subring thereof) is an FT-ring [3, Theorem I]. For this ring, C. R. Putnam obtained the following generalization [9, Lemma]: if \(a_1, a_2 \) are normal, and \(ba_1 = a_2b \), then \(ba_1^* = a_2^*b \). A ring with involution, in which the latter theorem holds, will be called a PT-ring.

We denote by \(A_n \) the ring of all \(n \times n \) matrices \(x = (a_{ij}), a_{ij} \in A \), provided with the "conjugate-transpose" involution \(x^* = (a_{ji}) \).

Theorem 1. If \(A_2 \) is an FT-ring, then \(A \) is a PT-ring.

Proof. Suppose \(a_1, a_2 \) are normal elements of \(A \), and \(ba_1 = a_2b \). Define
\[
x = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, \quad y = \begin{pmatrix} 0 & 0 \\ b & 0 \end{pmatrix}.
\]
Clearly \(x \) is normal. Moreover,
\[
yx = \begin{pmatrix} 0 & 0 \\ ba_1 & 0 \end{pmatrix}, \quad xy = \begin{pmatrix} 0 & 0 \\ a_2b & 0 \end{pmatrix}
\]
thus \(yx = xy \). Since Fuglede's theorem holds in \(A_2 \), \(yx^* = x^*y \), in other words \(ba_1^* = a_2^*b \).

Example 1. Let \(A \) be an involutive (i.e. adjoint-containing) ring of bounded operators acting on a Hilbert space \(H \). Then \(A_2 \) is an involutive ring acting on the direct sum of two copies of \(H \). By Fuglede's theorem, \(A_2 \) is an FT-ring; thus \(A \) is a PT-ring by Theorem 1. This is Putnam's generalization of the Fuglede theorem [9, Lemma]. The argument extends easily to cover the case that \(a_1, a_2 \) are possibly unbounded. The result then reads: if \(ba_1 \subseteq a_2b \) then \(ba_1^* \subseteq a_2^*b \).

In the reverse direction, if \(A \) is a PT-ring, then Fuglede's theorem

Presented to the Society, August 27, 1958; received by the editors July 28, 1958.

175
holds for the diagonal normal elements of A_2; we omit the obvious proof:

Theorem 2. If A is a PT-ring, and $a_1, a_2 \in A$ are normal, then the commutant of the normal matrix

$$x = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}$$

in A_2 is involutive; that is, the relations $y \in A_2, yx = xy$, imply $yx^* = x^*y$.

A ring A with involution is said to satisfy the *square root axiom* [6, Chapter VII] in case: given any $a \in A$, there exists a self-adjoint element r such that $r^2 = a^*a$, and such that r is in the double commutant of a^*a (that is, the relation $b(a^*a) = (a^*a)b$ implies $br = rb$).

Examples: any C^*-algebra (see [7, Theorem 26A]); the regular ring of a finite AW*-algebra [1, Corollary 6.2]. Suppose A is a ring satisfying the SR-axiom, and $a \in A$ is invertible. Write $u = ar^{-1}$, where r is the self-adjoint described above; clearly $u^*u = uu^* = 1$. The factorization $a = ur$ is called a “polar decomposition” for a.

Theorem 3. Let A be a PT-ring satisfying the square-root axiom. If a_1, a_2 are similar normal elements, they are unitarily equivalent.

Proof. Suppose $ba_1b^{-1} = a_2$. Then $ba_1 = a_2b$; since A is a PT-ring, $ba_1^* = a_2^*b$, thus $a_1b^* = b^*a_2$. Let $b = ur$ be a polar decomposition. Then a_1 commutes with b^*b; for, $a_1(b^*b) = (a_1b^*)b = (b^*a_2)b = b^*(a_2b) = b^*(ba_1) = (b^*b)a_1$. Hence $a_1 = ra_1$, and $a_2 = ba_1b^{-1} = (ur)a_1(r^{-1}u^*) = ua_1r^{-1}u^* = ua_1u^*$.

Example 2 (Putnam). If A is the ring of all bounded operators in a Hilbert space, and $a_1, a_2 \in A$ are similar normal operators, then a_1, a_2 are unitarily equivalent by Example 1 and Theorem 3 (see [9, Theorem 1]). The argument works just as well for A any C^*-algebra, the point being that the elements implementing the similarity and unitary equivalence are to be drawn from A.

A ring A with involution is said to possess a *trace* if there exists a mapping $a \mapsto \text{tr}(a)$ of A into some abelian group, such that (1) $\text{tr}(a + b) = \text{tr}(a) + \text{tr}(b)$, (2) $\text{tr}(ab) = \text{tr}(ba)$, and (3) $\sum_1^k \text{tr}(a_i^*a_i) = 0$ implies $a_1 = \cdots = a_k = 0$.

Theorem 4. If A is a ring with involution and trace, then A is a PT-ring.

Proof. Since A_2 also has a trace, defined for a matrix $x = (a_{ii})$ by the formula $\text{tr}(x) = \sum_1^n \text{tr}(a_{ii})$, it will suffice by Theorem 1 to show that A is an FT-ring. Suppose x is normal, and $yx = xy$. It must be
shown that \(z = yx^* - x^*y \) is 0. We learned the ensuing argument for this from I. Kaplansky. One has
\[
zz^* = yx^*xy^* - yx^*y^*x - x^*yy^*x + x^*yy^*x
= yxx^*y^* - yx^*y^*x - x^*yy^*x + x^*yy^*x
= xyx^*y^* - yx^*y^*x - xx^*yy^* + x^*yy^*x.
\]
Since \(\text{tr}(xyx^*y^*) = \text{tr}(yx^*y^*x) \), and \(\text{tr}(xx^*yy^*) = \text{tr}(x^*yy^*x) \), one has
\(\text{tr}(zz^*) = 0 \), hence \(z = 0 \).

Example 3. Let \(A \) be a commutative ring with involution, such that \(\sum_i a_i^*a_i = 0 \) implies \(a_1 = \cdots = a_k = 0 \), and set \(\text{tr}(a) = a \). Then \(A_n \) is a PT-ring by Theorem 4.

Example 4. Let \(Q \) be the ring of all real quaternions \(a = \alpha + \beta i + \gamma j + \delta k \), with involution \(a^* = \alpha - \beta i - \gamma j - \delta k \). One has \(a^*a = aa^* = \alpha^2 + \beta^2 + \gamma^2 + \delta^2 \), so that incidentally every element of \(Q \) is normal. Set \(\text{tr}(a) = \alpha \). It results from Theorem 4 that \(Q_n \) is a PT-ring. This is Putnam's theorem for finite-dimensional quaternionic Hilbert space, and raises the analogous question for infinite dimension.

Example 5. Let \(A \) be a homogeneous AW*-algebra of finite order \(n \), so that \(A = Z_n \), where \(Z \) is the center of \(A \). Let \(C \) be the regular ring of \(A \), \(W \) the regular ring of \(Z \); we may identify \(W \) with the center of \(C \) [1, Theorem 9.2]. Now, \(W \) has the properties in Example 3 [1, Lemma 3.4]; since \(C = W_n \) [2, concluding remark (2)], it follows that \(C \) has a \(W \)-valued trace. Thus \(C \) is a PT-ring. See Theorem 5 for the generalization to \(A \) of finite Type I.

Lemma. Suppose \(A \) is the C*-sum of a family \((A_i) \) of finite AW*-algebras, \(C \) is the regular ring of \(A \), and \(C_i \) is the regular ring of \(A_i \). Then \(C \) is the complete direct sum of the \(C_i \).

Proof. According to [5, §2], \(A \) is the set of all families \(a = (a_i) \) with \(a_i \in A \) and \(||a_i|| \) bounded; the operations in \(A \) are coordinate-wise. One knows from [5] that \(A \) is an AW*-algebra, and is clearly of finite class, so that we may speak of its regular ring \(C \).

Let \(D \) be the complete direct sum of the \(C_i \). That is, \(D \) is the set of all families \(x = (x_i) \) with \(x_i \in C_i \), with the coordinatewise operations. By an easy coordinatewise argument, one sees that \(D \) is regular. It must be shown that \(D = C \).

We may identify \(A \) as an involutive subalgebra of \(D \). We shall prove \(D = C \) by verifying the criterion of [1, §11]. Suppose \(x, y, z \in D \), and \(x^*x + y^*y + z^*z = 1 \). Then \(x_i^*x_i + y_i^*y_i + z_i^*z_i = 1 \) for all \(i \), hence \(x_i, y_i, z_i \in A_i \); since these elements all have norm \(\leq 1 \), one has \(x, y, z \in A \).
Theorem 5. If A is a finite AW^*-algebra of Type I, its regular ring C possesses a center-valued trace. In particular, C is a PT-ring.

Proof. Write A as the C^*-sum of a family (A_i) of homogeneous algebras, and let C_i be the regular ring of A_i. By the Lemma, C is the complete direct sum of the C_i. It follows at once that the center W of C is the complete direct sum of the centers W_i of C_i. According to Example 5, C_i has a W_i-valued trace. Then $(x_i) \mapsto (\text{tr } x_i)$ defines a W-valued trace on C, thus C is a PT-ring by Theorem 4.

It is reasonable to suppose that C is a PT-ring, for any finite AW^*-algebra A; in any case, since A_2 is AW^* with regular ring C_2 by [2], it would suffice by Theorem 1 to show that C is an FT-ring.

Corollary. Let A, C as in Theorem 5. If z_1, z_2 are similar normal elements of C, they are unitarily equivalent.

Proof. C is a PT-ring, with square root axiom [1, Corollary 6.2]; quote Theorem 3.

It results from the corollary that if two normal elements are similar via an unbounded element, they are already similar via a bounded (even unitary) element; in particular, a normal bounded element cannot be similar to a normal unbounded element. Normality is essential here, as is shown by the following example due to Jacob Feldman:

Example 6. Let A be the C^*-sum of denumerably many copies of the algebra K_2 of 2×2 complex matrices. A may be represented as the algebra of all functions $n \mapsto f(n)$ ($n = 1, 2, 3, \ldots$), with $f(n) \in K_2$, $\|f(n)\|$ bounded, and operations pointwise. Since K_2 is its own regular ring, the regular ring C of A is the algebra of all functions $n \mapsto f(n)$ with $f(n) \in K_2$. Consider the functions f, g, $h \in C$ defined by

$$f(n) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad g(n) = \begin{pmatrix} 0 & 0 \\ n & 0 \end{pmatrix}, \quad h(n) = \begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix}.$$

Since $h(n)f(n)h(n)^{-1} = g(n)$ for all n, one has $hfh^{-1} = g$. Thus f and g are similar in C, even though f is bounded (i.e., is an element of A) and g is not bounded.

2. More on the regular ring. Throughout, C denotes the regular ring of a finite AW^*-algebra A (of unrestricted type).

If $x \in C$, and $RP(x) = 1$, then x is invertible. For, $Cx = C$ [1, Corollary 7.1], so there exists $y \in C$ with $yx = 1$; moreover $LP(x) \sim RP(x) = 1$, hence $LP(x) = 1$ by finiteness, $xC = C, xz = 1$ for suitable z. Note that an $x \in C$ is invertible if and only if it is left (right) invertible.

If $x \in C$ is invertible, then x^* is invertible, and $(x^*)^{-1} = (x^{-1})^*$; if moreover x is self-adjoint, so is x^{-1}.

Lemma 1. If $x \in C$, $x \geq 0$, and x is invertible, then $x^{-1} \geq 0$.

Proof. Say $xy = yx = 1$, and $x = z^*z$ [1, Definition 6.1]. Then $(yz^*)z = 1$ shows that z is invertible (see above remarks), hence $x^{-1} = (z^*z)^{-1} = (z^{-1})(z^{-1})^* \geq 0$.

Lemma 2. Let $a \in A$, $0 \leq a \leq 1$, and suppose a has an inverse in C. Then $a^{-1} \geq 1$.

Proof. Say $ax = xa = 1$; we know $x \geq 0$ from Lemma 1. Write $x = y^2$, y self-adjoint [1, Corollary 6.2]. Since $(ay)y = y(ya) = 1$, y is invertible, and $ay = ya = y^{-1}$. Then $a \leq 1$, $y^*ay \leq y^*y$, $yay \leq y^2$, $ay^2 \leq y^2$, $ax \leq x$, $1 \leq x$.

Theorem 6. Suppose $x, y \in C$, $0 \leq x \leq y$, and x is invertible. Then y is invertible, and $x^{-1} \geq y^{-1} \geq 0$.

Proof. The relation $0 \leq x \leq y$ implies $RP(x) \leq RP(y)$ (see the proof of [1, Corollary 7.6]); by assumption $RP(x) = 1$, hence $RP(y) = 1$, y is invertible. Write $x^{1/2} = wy^{1/2}$ with $w \in A$, $w^*w \leq 1$ [1, Corollary 7.6]. Then $w = (x^{1/2})(y^{1/2})^{-1}$ is invertible in C, hence so is w^*w, and $(w^*w)^{-1} = (w^{-1})(w^{-1})^* \geq 1$ by Lemma 2. Since $(x^{1/2})^{-1} = (y^{1/2})^{-1}w^{-1}$, one has $x^{-1} = (x^{1/2})^{-1}(x^{1/2})^{-1} = (y^{1/2})^{-1}(w^{-1})(w^{-1})^*(y^{1/2})^{-1} \geq (y^{1/2})^{-1} \cdot (y^{1/2})^{-1} = y^{-1}$. For a similar result of Rellich, see [4, Hilfsatz 4].

Corollary. Suppose A has the property that every increasingly directed family of self-adjoint elements, which is bounded above, has a least upper bound. Then C has the same property.

Proof. For ease of notation, we write the proof for sequences. Suppose $x_i \in C$ are self-adjoint, $x_1 \leq x_2 \leq x_3 \leq \cdots$, $y \in C$ is self-adjoint, and $x_i \leq y$ for all i. Adding $-x_1$ throughout, we can assume $0 \leq x_i \leq y$. Then $1 \leq 1 + x_1 \leq 1 + x_2 \leq \cdots \leq 1 + y$, hence by Theorem 6, $1 \geq (1 + x_1)^{-1} \geq (1 + x_2)^{-1} \geq \cdots \geq (1 + y)^{-1} \geq 0$. But $(1 + x_i)^{-1}$ and $(1 + y)^{-1}$ belong to A [1, Lemma 5.1]. Let $a \in A$ be the greatest lower bound of the $(1 + x_i)^{-1}$; one has $0 \leq (1 + y)^{-1} \leq a \leq (1 + x_i)^{-1}$. By Theorem 6, a has an inverse in C, and $1 + y \geq a^{-1} \geq 1 + x_i$. Evidently $a^{-1} - 1$ is a least upper bound for the x_i. (Example: A any finite W^*-algebra; see [8, Theorem 1].)

Lemma. Let $z \in C$ be normal, and suppose there exists a complex number λ such that $z - \lambda$ has an inverse in A. Then the relations $a \in A$, $az = za$, imply $az^* = z^*a$.

Proof. (We are assuming, so to speak, that the "resolvent set" of z is nonempty.) Suppose $a \in A$, $az = za$. Then $a(z - \lambda) = (z - \lambda)a$, and $z - \lambda$ is normal. Changing notation, assume z invertible, $z^{-1} \in A$, .
az = za. Then $z^{-1}a = az^{-1}$, hence by Fuglede's theorem $a(z^{-1})^* = (z^{-1})^*a$, $a(z^*)^{-1} = (z^*)^{-1}a$, $z^*a = az^*$.

Theorem 7. Let $z \in C$ be normal, and write $z = x + iy$ with x and y self-adjoint. Suppose there exists a real number α such that $x - \alpha$ (or $y - \alpha$) has an inverse in A. Then the relations $a \in A$, $az = za$, imply $az^* = z^*a$.

Proof. Passing to iz if necessary, we may suppose that it is $x - \alpha$ which has a bounded inverse. Then $(x - \alpha)^{-2} = (x - \alpha)^{-1}(x - \alpha)^{-1} \leq \beta$ for a suitable real number $\beta > 0$. By Theorem 6, $(x - \alpha)^2 \geq 1/\beta > 0$. Since $yx = xy$ by normality, and $z - \alpha = (x - \alpha) + iy$, we have $(z - \alpha)^* \cdot (z - \alpha) = (x - \alpha)^2 + y^2 \geq (x - \alpha)^2 \geq 1/\beta > 0$. Hence $(z - \alpha)^*(z - \alpha)$ is invertible, and $(z - \alpha)^{-1}(z - \alpha)^{-1} \leq \beta$. Therefore $(z - \alpha)^{-1} \in A$ [1, Lemma 5.1]; quote the lemma.

A self-adjoint $x \in C$ is semi-bounded in case there exists a real number β such that either $x \leq \beta$ or $x \geq \beta$. For instance if $x \in A$ is self-adjoint, then $x \leq \|x\|$. If x is semi-bounded, say $x \geq \beta$, then setting $\alpha = \beta - 1$, one has $x - \alpha \leq 1$, hence $x - \alpha$ has a bounded inverse (Theorem 6, and Lemma 5.1 of [1]). Thus:

Corollary. Let $z \in C$ be normal, and write $z = x + iy$, with x and y self-adjoint. Suppose either x or y is semi-bounded. Then the relations $a \in A$, $az = za$, imply $az^* = z^*a$.

If A has a trace (e.g. if A is Type I, or is a finite W^*-algebra), it is clear that the relations $a \in A$, $a^*a \leq aa^*$, imply $a^*a = aa^*$. We do not know if every finite AW^*-algebra A has this property, but whenever A does, so does C:

Theorem 8. Suppose the relations $a \in A$, $a^*a \leq aa^*$, imply $a^*a = aa^*$. Then the relations $x \in C$, $x^*x \leq xx^*$, imply $x^*x = xx^*$.

Proof. Suppose $x^*x \leq xx^*$. Write $x = ur$, $r \geq 0$, u unitary [1, Corollary 7.4]. Then $x^*x = r^2$, and $xx^* = ur^2u^* = u(x^*x)u^*$. Setting $s = x^*x$, $t = xx^*$, we have $0 \leq s \leq t$, and s, t are unitarily equivalent. Set $b = (1 + s)^{-1}$, $c = (1 + t)^{-1}$; clearly b, c are unitarily equivalent, in fact $usu^* = t$ yields $ubu^* = c$. Moreover $b \geq c$ by Theorem 6, and b, $c \in A$ [1, Lemma 5.1]. Set $a = b^{1/2}u^*$. Then $aa^* = b^{1/2}u^*ub^{1/2} = b \geq c = ubu^* = a^*a$. By the hypothesis on A, $aa^* = a^*a$, hence $b = c$, and this leads to $s = t$.

Corollary 1. Suppose the relations $a \in A$, $a^*a \leq aa^*$, imply $a^*a = aa^*$. If $x \in C$, and x commutes with x^*x, then x is normal.

Proof. By assumption $xx^*x = x^*xx$. Right-multiplying by x^*,
\[xx*xx* = x*x xx* \] Setting \(r = x*x, s = xx* \), we have \(r \geq 0, s \geq 0 \), and \(s^2 = rs \). In particular \(rs \) is self-adjoint, so that \(rs = sr \). Hence by uniqueness of positive square roots, \(s = (s^2)^{1/2} = (rs)^{1/2} = r^{1/2}s^{1/2} \) (see \([1, \text{remarks following Definition 6.3}]\)). Then \(0 \leq (r^{1/2} - s^{1/2})^2 = r - 2r^{1/2}s^{1/2} + s = r - 2s + s = r - s \), thus \(0 \leq s \leq r \). That is, \(xx* \leq x*x \), hence \(xx* = x*x \) by Theorem 8.

Remark. In an infinite algebra \(B \), choose \(x \in B \) with \(x^*x = 1 \) but \(xx* \neq 1 \). Then \(x \) commutes with \(x^*x \), but is not normal.

Corollary 2. Suppose the relations \(a \in A, a^*a \leq aa^* \), imply \(a^*a = aa^* \). Then every triangular normal matrix in \(C_n \) is diagonal.

Proof. Suppose e.g. \(n = 3 \), and

\[
\begin{pmatrix}
 a & b & c \\
 0 & d & e \\
 0 & 0 & f
\end{pmatrix}
\]

is a normal element of \(C_3 \). From the 1-1 position in the relation \(z^*z = zz^* \), one has \(a^*a = aa^* + bb^* + cc^* \), thus \(a^*a - aa^* = bb^* + cc^* \geq 0 \) \([1, \text{Theorem 6.1}]\), \(aa^* \leq a^*a \). By Theorem 8, \(aa^* = a^*a \), hence \(b = c = 0 \) \([1, \text{Lemma 3.4}]\). Inspection now of the 2-2 position similarly yields \(e = 0 \). The case for general \(n \) is an obvious induction.

Remark. If \(B \) is an infinite algebra, there exists a normal (even unitary) matrix

\[
\begin{pmatrix}
 a & b \\
 0 & c
\end{pmatrix}
\]

in \(B_2 \) with \(b \neq 0 \). For, choose a partial isometry \(a \in A \) with \(a^*a = 1,
aa^* = e \neq 1 \), and set \(b = 1 - e, c = a^* \).

Addenda. (1) I am indebted to J. Dixmier for calling my attention to the references \([4] \) and \([8] \).

(2) Recently M. Rosenblum has given a beautiful proof of the Fuglede-Putnam theorem; for bounded operators, the proof is non-spatial (see \([10] \)).

References

State University of Iowa

A CORRECTION AND IMPROVEMENT OF A THEOREM ON ORDERED GROUPS

PAUL CONRAD

In this note the notation and terminology of [1] will be used throughout. In particular, G will always denote an o-group with well ordered rank. Let P be the multiplicative group of positive rational numbers, and let R be the additive group of real numbers. In [1] the proofs of Theorems 2 and 3 are incorrect. This is a result of the careless formulation of the theorems by the author. Consider the following properties of G.

1. Each component G^γ/G^γ of G has its group of o-automorphisms isomorphic to a subgroup P^γ of P.
2. Each component G^γ/G^γ of G is o-isomorphic to a subgroup D^γ of R, and the only o-automorphisms of D^γ are multiplications by some elements of P.
3. For each pair $\alpha \in \alpha$ and $\gamma \in \Gamma$, there exists a pair m, n of positive integers such that $ng\alpha \equiv mg \mod G^\gamma$ for all g in G^γ.

The statements of Theorems 2 and 3 include the hypothesis (1), but (2) and (3) are actually used in the proofs. Clearly (2) implies (1).

Lemma. (a) (2) is independent of the particular choice of D^γ. (b) (2) implies (3). (c) (1) does not imply (2) or (3).

Proof. (a) Let σ be an o-isomorphism of the subgroup A of R onto the subgroup B of R, and suppose that the only o-automorphisms of A are multiplications by some elements of P. If β is an o-automor-

Received by the editors August 1, 1958.