A QUESTION CONCERNING POSITIVE TYPE POLYNOMIALS

HENRY TEICHER

1. The problem. In [1], the following problem is posed: Let $0 < A < 1$. Find the smallest integer n for which there exist n real numbers a_1, a_2, \cdots, a_n such that the polynomial $(y^2 - 2Ay + 1) \cdot \prod_{i=1}^{n} (y + a_i)$ has all its coefficients non-negative. If N is such an integer, does there exist some real number a such that $(y^2 - 2Ay + 1) \cdot (y + a)^N$ has only non-negative coefficients.\(^1\)

In the process of giving the solution, we recast the problem slightly and put it into relief against several similar problems.

Let ϕ_0^+ denote the class of positive type polynomials, [2], of degree n, that is, $\phi_0^+ = \{ P_n(x) \} = \{ \sum_{j=0}^{n} a_j x^j, a_j \geq 0, j = 0, 1, \cdots, n \}$. Here, we suppose, in addition, without loss of generality, that $a_0 > 0$, $a_n = 1$. Define $\phi^+ = \phi_0^+ \cup \phi_n^+$. Further, let ϕ_j^+ (respectively, $\phi_j^+; \phi_j^+$) denote the class of polynomials, all of whose roots are real and negative (respectively, are equal and negative; have negative real part). What is the smallest integer $N_j = N_j(\epsilon)$ such that $(x^2 - x + \epsilon)^N \in \phi^+$ where $\epsilon > 1/4$ and $Q(x)$ is a polynomial of degree N_j which belongs to ϕ_j^+? Here, j takes any of the values $0, 1, 2, 3$. If $j = 0$, the answer is contained in the statement and proof of Theorem 1 of [2]. For $j = 1$, the smallest integer n (namely N_1) for which $(x^2 - x + \epsilon) \prod_{i=1}^{n} (x + b_i) \in \phi^+$ is exactly the integer N mentioned earlier, as the correspondence $y \to 2Ax, \epsilon \to (4A^2)^{-1}, a_i \to \Delta b_i$ shows. Clearly, $b_i \geq 0$, all i and when $n = N_1, b_i > 0, i = 1, 2, \cdots, N_1$. For $j = 2$, the above question is intimately related to the second part of the research problem while for $j = 3$, the connection is more remote.

All of these questions are rendered easier by an inversion, that is, the fixing of n and the quest for the smallest $\epsilon = \epsilon_n$ such that

\begin{equation}
(1.1) \quad (x^2 - x + \epsilon)Q_n(x) \in \phi^+.
\end{equation}

It is then a simple matter to express conditions for (1.1) in terms of the coefficients of $Q_n(x)$. The difficulties arise in fulfilling these and simultaneously insuring that $Q_n(x) \in \phi_j^+$. Fortunately, when $j = 1$ (which will henceforth be supposed), necessary conditions that

\(^1\)A third part of the problem asks for a generalization in which the factor $(y^2 - 2Ay + 1)$ is replaced by an arbitrary polynomial (without positive roots). This appears to be of a different order of difficulty.

Presented to the Society, February 28, 1959; received by the editors May 16, 1958 and, in revised form, September 24, 1958.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Q_n(x) = \prod_{i=1}^{n} (x+b_i) \in \mathfrak{P}_1^+ are sufficient to resolve the problem. Writing \(b=(b_1, \cdots, b_n)\) any pair \((e, b)\) satisfying (1.1) will be called a "real solution." \(C_{n,j}\) will denote the combinatorial symbol.

2. The solution. Define \(Q_n(x) = \sum_{j=0}^{n} C_{n,j} p_j x^{n-j}, p_0 = 1.\) For (1.1) to hold, it is evidently necessary and sufficient that

\[
(2.1) \quad C_{n,j+1} p_{j+1} - C_{n,j} p_j + e C_{n,j-1} p_{j-1} \geq 0, \quad j = 1, \ldots, n-1,
\]

\[
(2.1)' \quad np_1 \geq 1, \quad enp_{n-1} \geq p_n.
\]

Define further \(r_j = p_j/p_{j-1}, j = 1, 2, \ldots, n.\) The preceding equations take the form

\[
(2.2) \quad \frac{n-j}{j+1} r_{j+1} + \frac{\epsilon j}{n-j+1} \frac{1}{r_j} \geq 1, \quad j = 1, 2, \ldots, n-1,
\]

\[
(2.2)' \quad r_1 \geq n^{-1}, \quad r_n \leq en.
\]

A necessary condition, [3], that in addition, \(Q_n(x) = \prod_{i=1}^{n} (x+b_i)\) for real \(b_i,\) that is, \(p_j = (C_{n,j})^{-1} \sum b_i b_{i_2} \cdots b_{i_j}\) where the summation is over indices \(1 \leq i_1 < i_2 < \cdots < i_j \leq n,\) is conveniently expressed as

\[
(2.3) \quad r_1 \geq r_2 \geq \cdots \geq r_n.
\]

The equality of any pair of the \(r's,\) say, \(r_i = r_j = r\) implies the equality of all intervening \(r's\) (if any) and hence \(b_1 = b_2 = \cdots = b_n = r.\) Conversely, \(b_1 = b_2 = \cdots = b_n = b\) clearly implies \(r_1 = r_2 = \cdots = r_n = b.\) These facts will be used later.

It follows directly from (2.2) and (2.3) that any real solution must satisfy also

\[
(2.4) \quad r_{j+1} - \frac{j+1}{n-j} r_j + \frac{\epsilon j(j+1)}{(n-j)(n-j+1)} \geq 0, \quad j = 1, \ldots, n-1;
\]

that is, for \(j=1, 2, \ldots, n-1\)

\[
(2.5) \quad r_{j+1} \leq \frac{j+1}{2(n-j)} \left[1 - \left(1 - \frac{4\epsilon j(n-j)}{(j+1)(n-j+1)} \right)^{1/2} \right] = r_{j+1}^-(\epsilon) \quad \text{(say)}
\]
or

\[
(2.5)' \quad r_{j+1} \geq \frac{j+1}{2(n-j)} \left[1 + \left(1 - \frac{4\epsilon j(n-j)}{(j+1)(n-j+1)} \right)^{1/2} \right] = r_{j+1}^+ (\epsilon) \quad \text{(say)}.
\]

We pause now in the general line of reasoning to establish two crucial results. Let \(\epsilon\) be such that \(r_j^- = r_j^- (\epsilon)\) and \(r_j^+ = r_j^+ (\epsilon)\) are real valued for \(j = 2, 3, \ldots, n,:\)
A. (a) If \(n \) is odd and \(\epsilon \leq (n+3)^2/4(n+1)^2 \) then \(r_{j+1}(\epsilon) \leq r_j^*(\epsilon) \) for \(j = 1, 2, \ldots, n-1 \). Further, for this range of \(\epsilon \), equality holds only if \(j = (n+1)/2 \) and \(\epsilon = (n+3)^2/4(n+1)^2 \).

(b) If \(n \) is even and \(\epsilon \leq (n+4)/4n \) then \(r_{j+1}(\epsilon) \leq r_j^*(\epsilon) \) for \(j = 1, 2, \ldots, n-1 \). Further, for this range of \(\epsilon \), equality holds only if \(j = n/2 \) or \((n+2)/2\), and \(\epsilon = (n+4)/4n \).

Proof. \(r_{j+1}^* \leq r_j^* \) is tantamount to

\[
\frac{(j+1)(n-j+1) - ((j+1)^2(n-j+1)^2 - 4\epsilon j(j+1)(n-j)(n-j+1))^{1/2}}{2(n-j)(n-j+1)} \leq \frac{j(n-j+2) + (j^2(n-j+2)^2 - 4\epsilon j(j-1)(n-j+1)(n-j+2))^{1/2}}{2(n-j+1)(n-j+2)},
\]

or

\[
(n + 1) - ((j + 1)^2(n - j + 1)^2 - 4\epsilon j(j + 1)(n - j)(n - j + 1))^{1/2} \leq (n - j)(j^2 - 4\epsilon j(j - 1)(n - j + 1)(n - j + 2))^{1/2}.
\]

If \(j \) is such that the left hand side (L.H.S.) is negative, the preceding is automatically true; otherwise it is equivalent to

\[
4\epsilon j(n - j + 1) - j(n - j + 2) \leq (j^2(n - j + 2)^2 - 4\epsilon j(j - 1)(n - j + 1)(n - j + 2))^{1/2}.
\]

Again, this is trivially true if the L.H.S. is negative and otherwise equivalent to \(4\epsilon j(n-j+1) \leq (j+1)(n-j+2) \) or

(2.6) \(j(n - j + 1) \leq (n + 2)(4\epsilon - 1)^{-1} \).

If now \(n \) is odd, rewrite (2.6) in the form

\[
0 \leq \left(j - \frac{n + 1}{2}\right)^2 + \frac{n + 2}{4\epsilon - 1} - \frac{(n + 1)^2}{4}
\]

and, retracing the steps, this yields (a).

On the other hand if \(n \) is even, rewrite (2.6) as

\[
0 \leq \left(j - \frac{n}{2}\right)\left(j - \frac{n + 2}{2}\right) + (n + 2)\left[\frac{1}{4\epsilon - 1} - \frac{n}{4}\right]
\]

from which (b) is deduced.

B. (a) If \(r_{j+1} \leq r_{j+1}^* \), then \(r_j \leq r_{j+1}^* \), \(j = 1, 2 \ldots n-1 \).

(b) If, for \(n \) odd, \(\epsilon \leq (n+3)^2/4(n+1)^2 \) or for \(n \) even, \(\epsilon \leq (n+4)/4n \) then \(r_j \leq r_j^* \) implies \(r_{j+1} \leq r_j^* \), \(j = 1, 2 \ldots n-1 \) (equality for \(n \) odd only if \(j = (n+1)/2 \) and \(\epsilon = (n+3)^2/4(n+1)^2 \); equality for \(n \) even only if \(j = n/2 \) or \((n+2)/2\), and \(\epsilon = (n+4)/4n \).
PROOF: Noting from (2.4) that
\[r_{j+1}^{-} \cdot r_{j+1}^{+} = \frac{\epsilon j(j + 1)}{(n - j)(n - j + 1)}, \quad i = 1, 2 \cdots n - 1, \]
we see from (2.2) and the hypothesis of (a) that
\[
r_j \leq \frac{\epsilon j(n - j + 1)}{j + 1} \left[1 - \frac{n - j}{r_{j+1}^{-}} \right]^{-1} \]
\[
= \frac{\epsilon j(n - j + 1)}{2(n - j)} \left[1 - \left(1 - \frac{4\epsilon j(n - j)}{(j + 1)(n - j + 1)} \right)^{1/2} \right]^{-1} \]
\[
= \frac{j + 1}{2(n - j)} \left[1 - \left(1 - \frac{4\epsilon j(n - j)}{(j + 1)(n - j + 1)} \right)^{1/2} \right] = r_{j+1}^{-}. \]
To prove (b), we note from A that \(\epsilon j/(n-j+1) \cdot 1/r_{j+1}^{-} > \epsilon j/(n-j+1) \cdot 1/r_j^{+},\) or equivalently
\[
1 - \frac{\epsilon j}{(n - j + 1)r_j^{+}} > 1 - \frac{1}{2} \left[1 + \left(1 - \frac{4\epsilon j(n - j)}{(j + 1)(n - j + 1)} \right)^{1/2} \right] \]
\[
= \frac{n - j}{j + 1} r_{j+1}^{-}. \]
Hence, the hypothesis of (b) and (2.2) imply
\[
\frac{n - j}{j + 1} r_{j+1}^{-} \geq 1 - \frac{\epsilon j}{(n - j + 1)r_j^{+}} > \frac{n - j}{j + 1} r_{j+1}^{-} \]
which yields the conclusion of (b).

In returning to the problem as a whole, we discard the possibility that \(r_j^{-}(\epsilon)\) and \(r_j^{+}(\epsilon)\) are complex valued since this occurs only for values of \(\epsilon\) larger than those for which we establish solutions. Also, we must separate the case of odd \(n\) from that of even \(n\). Suppose first that \(n = 2k + 1\) where \(k\) is a non-negative integer. We shall show that \(\epsilon'_n = (n+3)^2/4(n+1)^2\) is the smallest value of \(\epsilon\) for which there exist real numbers \(r_1, r_2 \cdots r_n\) satisfying (2.2), (2.2)' and (2.3). As a consequence, no real solution is possible for \(\epsilon < \epsilon'_n\). We shall also find a (unique) real solution for \(\epsilon = \epsilon'_n\). To this end, we distinguish, via (2.5), three mutually exclusive and exhaustive possibilities:

(i) \(r_{k+1} \geq r_{k+1}^{\epsilon} \), \(r_{k+2} \leq r_{k+2}^{\epsilon} \),
(ii) \(r_{k+1} \leq r_{k+1}^{\epsilon} \),
(iii) \(r_{k+2} \geq r_{k+2}^{\epsilon} \).

If (i) holds, (2.2) and (i) imply
\((2.8) \quad r_{k+2} \geq r_{k+2} \geq \frac{k+2}{k} \left[1 - \frac{\varepsilon}{r_{k+1}} \right]. \)

Substituting (2.7) for \(j = k \) into (2.8) and recalling the definitions of \(r_{k+1}^+, r_{k+2}^- \), we find that

\[
\frac{k+2}{2k} \left[1 - (1 - 4\varepsilon k(k + 2)^{-1})^{1/2} \right]
\]

which is valid only if \(\varepsilon \geq (k + 2)^2/4(k + 1)^2 = (n + 3)^2/4(n + 1)^2 = \varepsilon_n'^{\prime}. \)

We now show that a real solution does exist for \(\varepsilon = \varepsilon_n'^{\prime} \). When \(\varepsilon = \varepsilon_n'^{\prime}, \)

(2.9) yields \(r_{k+2} = (k + 2)/2(k + 1) \). Substituting this value of \(r_{k+2} \) and \(\varepsilon = \varepsilon_n'^{\prime} \) back in (2.2), we find \(r_{k+1} \leq (k + 2)/2(k + 1) \) which combined

with (i) \(r_{k+1} \geq r_{k+1}(\varepsilon_n'^{\prime}) = (k + 2)/2(k + 1) \) implies

\(r_{k+1} = (k + 2)/2(k + 1) = r_{k+2}. \)

But then, as remarked earlier, \(b_j = (k + 2)/2(k + 1) = (n + 3)/2(n + 1) = b_j'^{\prime} \) (say), \(j = 1, 2, \ldots, n \) implying \(r_j = (n + 3)/2(n + 1), j = 1, 2, \ldots, n \) and these values of \(r_j \) are quite compatible with (2.2), (2.2)' and (2.3). Consequently, \(\varepsilon_n'^{\prime}, b_j'^{\prime} \) is a real solution and among all real solutions conforming to (i), it is the one having minimal \(\varepsilon \).

Since we are concerned only with the possibility of solutions with smaller \(\varepsilon \), we assume in what follows that \(\varepsilon \leq \varepsilon_n'^{\prime} \). Suppose next that (ii) \(r_{k+1} \geq r_{k+1}^+ \) prevails. Part (a) of B yields \(r_k \leq r_{k+1}^- \). But then necessarily \(r_k \leq r_k^- \) since the only alternative permitted by (2.5), namely \(r_k \geq r_k^+ \) entails (by proposition A) \(r_k \geq r_k^+ > r_{k+1}^+, \) a contradiction. Repeating this chain of argument, we eventually deduce \(r_2 \leq r_2^- \). Applying (a) of B once more, we find \(r_1 \leq r_2^- = [1/n - 1] [1 - (1 - 2\varepsilon_n'^{\prime} (n - 1)n^{-1})^{1/2}] \) which contradicts (2.2)' for \(n \geq 3 \).

Finally, the contingency (iii) \(r_{k+2} \geq r_{k+2}^- \) implies by (b) of B that \(r_{k+3} \geq r_{k+3}^- \). But then (2.5) insures that \(r_{k+3} \geq r_{k+3}^+ \). Continuing in this fashion, we find that \(r_n \geq r_n^+ > n\varepsilon \) (for \(\varepsilon \leq \varepsilon_n'^{\prime} \)) contradicting (2.2)' for \(n > 1 \).

When \(n = 1 \), it is trivial to verify that \(\varepsilon = \varepsilon_1'^{\prime} = 1, b = b_1'^{\prime} = 1 \) is the unique minimal real solution.

Thus, when \(n = 2k + 1 \), \(P_{n+2}(x) = (x^2 - x + \varepsilon) \prod_{i=1}^{n} (x + b_i) \in \mathcal{G}^+ \) only if \(\varepsilon \leq \varepsilon_n'^{\prime} \). Further, when \(\varepsilon = \varepsilon_n'^{\prime} \) there is only one possible choice of \(b \), namely, \(b_1 = b_2 = \cdots = b_n = (\varepsilon_n'^{\prime})^{1/2} \). These values cause the central terms of \(P_{n+2}(x) \) of degree \(k + 1 \) and \(k + 2 \) to vanish.

\(^2\) It is to be understood wherever a real solution is concerned that \((\varepsilon, z) \) abbreviates the \((n + 1)\)-tuple \((\varepsilon, z, z, \ldots, z)\).
We turn now to the case \(n = 2k, k \) a positive integer, and distinguish four mutually exclusive and exhaustive possibilities:

(i) \(r_k \geq r_k^+(e), r_{k+1} \leq r_{k+1}^-(e) \);

(ii) \(r_{k+1} \geq r_{k+1}^+(e), r_{k+2} \leq r_{k+2}^-(e) \);

(iii) \(r_k \leq r_k^-(e) \),

(iv) \(r_{k+2} \geq r_{k+2}^+(e) \).

Under case (i), employing (2.2) and then (2.7) for \(j = k \), we have

\[
\begin{align*}
- \frac{1}{r_{k+1}^-(e)} & \geq \frac{k + 1}{k} \left[1 - \frac{ek}{(k + 1)r_k^+} \right] \\
& = \frac{k + 1}{k} \left[1 - \frac{k + 2}{k - 1} \right] \frac{r_k^+}{r_k^-}
\end{align*}
\]

which is valid only when \(e \geq (k+2)/4k = (n+4)/4n = e''_n \) (say). We show next that a solution exists for \(e = e''_n \).

For this determination of \(e \), (2.10) implies that \(r_{k+1} = 1/2 \). Substituting these values back in (2.2) we find \(r_k \leq 1/2 \), which, combined with (i) \(r_k \geq r_k^+(e'') = 1/2 \), yields the result \(r_k = 1/2 = r_{k+1} \). But then \(b_j = 1/2 \) which, in turn, forces \(r_j = 1/2 \) and it is readily checked that these latter values satisfy (2.2) and (2.2)'.

Thus, \((e''_n, 1/2) \) is a real solution and no other real solution compatible with (i) permits a smaller choice of \(e \).

In case (ii) \(r_{k+1} \geq r_{k+1}^+(e), r_{k+2} \leq r_{k+2}^-(e) \) analogus reasoning again yields \(e \geq e''_n \) but now \(r_{k+1} = r_{k+2} = (k+2)/2k = (n+4)/2n = 2e''_n \) and it is easily verified that \((e''_n, 2e''_n) \) also constitutes a real solution.

The remaining cases (iii) \(r_k \leq r_k^-(e) \) and (iv) \(r_{k+2} \geq r_{k+2}^+(e) \) may be disposed of, as in the case \(n \) odd, by a systematic use of propositions A and B.

Thus, when \(n = 2k \), \(P_{n+2}(x) = (x^2 - x + e) \prod_{i=1}^n (x + b_i) \in \mathbb{P}^+ \) only if \(e \geq e''_n \) and when \(e = e''_n \), there are two real solutions obtained by choosing \(b_j = 2e''_n \) or \(b_j = 1/2 \). In the former case the coefficients of the terms of degree \(k \) and \(k+1 \) in \(P_{n+2}(x) \) are zero while in the latter case the terms \(x^k \) and \(x^{k-1} \) vanish. Note that \(1/2 < 2e''_n \leq 1 \) and that \(2e''_n \leq 1/2 \). Similarly, \(1/2 < b''_n = (e''_n)^{1/2} \leq 1 \) and \(b'_n = 1/2 \).

Define

\[
\begin{align*}
e_n &= e'_n, \quad n \text{ odd} \\
\bar{b}_n &= \bar{b}_n = (e''_n)^{1/2}, \quad n \text{ odd}, \\
&= e''_n, \quad n \text{ even} \\
\bar{b}_n &= 2e''_n, \quad n \text{ even}, \\
\bar{b}_n &= 1/2, \quad n \text{ even}.
\end{align*}
\]

Since \(e'_n > e''_{n+1} \) and \(e''_n > e'_{n+1} \), the sequence \(\{ e_n \} \) is monotone decreasing (to 1/4). Hence, the step function (take \(e_0 = +\infty \))

\[
N_1(e) = j, \quad \psi_j \leq e < \psi_{j-1}, \quad j = 1, 2 \cdots
\]
gives the answer to the question initially posed.

Clearly, if \(\epsilon' > \epsilon \) and \(P_{n+2}(x; \epsilon) = (x^2 - x + \epsilon) \prod_{i=1}^{n}(x + b_i) \in \mathcal{O}^+ \), then \(P_{n+2}(x; \epsilon') = P_{n+2}(x; \epsilon) + (\epsilon' - \epsilon) \prod_{i=1}^{n}(x + b_i) \in \mathcal{O}^+ \). Consequently, \((x^2 - x + \epsilon)(x + b_n)^n \in \mathcal{O}^+ \) for all \(\epsilon \geq \epsilon_n \) and likewise \((x^2 - x + \epsilon)(x + b_n)^n \in \mathcal{O}^+ \), \(\epsilon \geq \epsilon_n \). Thus, the answer to the second question raised is affirmative. The real numbers \(b_1, b_2, \ldots, b_n \) may always be selected equal without increasing \(n \) and indeed when \(\epsilon = \epsilon_n \), they must be chosen equal if \(n \) is to be kept minimal. Expressed otherwise, \(N_1(\epsilon) = N_2(\epsilon) \).

3. Remarks. In this section, we give a more precise sufficient condition than that contained in Theorem 1 of [2] which states that a necessary and sufficient condition that there exist \(P_m(x) = \sum_{j=0}^{m} a_j x^j \in (x^2 - x + \epsilon) P_{m-2}(x) \in \mathcal{O}^+ \) is that \(m \geq M(\epsilon) \) where \(M(\epsilon) \) is equal to the smallest integer \(j \) for which \(j \arccos (2(\epsilon)^{1/2}) - 1 \geq \pi \). Here, \(m-2 \) and \(M(\epsilon) - 2 \) correspond respectively to the \(n \) and \(N_1(\epsilon) \) of §1. We employ the notation and results of [2].

Analogous to (2.1) (of §2 or of [2]), we have (take \(P_{m-2}(x) = \sum_{j=0}^{m-2} c_j x^j \))

\[
(3.1) \quad c_{j-2} - c_{j-1} + \epsilon c_j = a_j \geq 0, \quad j = 0, 1 \cdots m
\]
as a necessary and sufficient condition that \(P_m(x) \in \mathcal{O}^+ \). Here, \(c_{-2} = c_{-1} = c_{m-1} = c_m = 1 - c_{m-2} = 0 \).

Multiply (3.1) by \(\bar{g}_{j-1} = \bar{g}_{j-1}(\epsilon) \) (see [2] for definition) and sum from \(j = 2 \) to \(j = i \) obtaining (via (1.6) of [2] and \(\bar{g}_1 = \bar{g}_2 = 1 \))

\[
(3.2) \quad c_0 - (\bar{g}_{i-1} - \epsilon \bar{g}_{i-2}) + \epsilon \bar{g}_{i-1} \bar{c}_i = \sum_{j=2}^{i} a_j \bar{g}_{j+1}.
\]

Hence, from (1.3) of [2],

\[
(3.3) \quad c_i \geq \frac{\bar{g}_i(\epsilon) c_{i-1} - c_0}{\epsilon \bar{g}_{i-1}(\epsilon)} \quad \text{for} \quad i < M(\epsilon) - 1.
\]

In analogous fashion, multiply (3.1) by \(\epsilon^{-(m-2-i)} \bar{g}_{m-1-j} \) and sum from \(j = m-2 \) to \(j = m-i \) to obtain

\[
\epsilon - \epsilon^{-(i-2)} [\bar{g}_{i-1} - \epsilon \bar{g}_{i-2}] c_{m-i-1} + \epsilon^{-(i-2)} \bar{g}_{i-1} c_{m-i-2} = \sum_{r=2}^{m-i} \epsilon^{-(r-2)} \bar{g}_{r-1} a_{m-r},
\]

implying

\[
(3.4) \quad c_j \geq \frac{\bar{g}_{m-j-2} \bar{c}_{j+1} - \epsilon^{m-j-3}}{\bar{g}_{m-j-3}} \quad \text{for} \quad m - j < M(\epsilon) - 1.
\]
Now, the trigonometric representation (see (1.3) of [2]) of \(g_j(\delta) \) readily yields the identity
\[
\tilde{g}_j(\epsilon)^2 - \epsilon^{j-1} = \tilde{g}_{j-1}(\epsilon)\tilde{g}_{j+1}(\epsilon), \quad j \geq 2.
\]
Then, utilizing (3.6), an induction on (3.3) gives
\[
(3.7) \quad c_j \geq \epsilon^{-j} \tilde{g}_{j+1}(\epsilon) c_0, \quad 1 \leq j < M(\epsilon) - 1.
\]
Similarly, induction on (3.5) leads to
\[
(3.8) \quad c_{m-j} \geq \tilde{g}_{j-1}(\epsilon), \quad m - j < M(\epsilon) - 1.
\]
Thus, (3.7) and (3.8) furnish simple necessary conditions for the coefficients \(c_j \) in terms of the known polynomials \(\tilde{g}_j(\epsilon) \).

Finally, we note that choosing \(c_j \) equal to the lower bound of (3.8) gives
\[
P_m(x) = (x^2 - x + \epsilon) \sum_{i=0}^{m-2} \tilde{g}_{m-i-1}(\epsilon) x^i = x^m + (\epsilon \tilde{g}_{m-2} - \tilde{g}_{m-1}) x + \epsilon \tilde{g}_{m-1}(\epsilon)
\]
\[= x^m - \tilde{g}_m(\epsilon) x + \epsilon \tilde{g}_{m-1}(\epsilon).
\]
But for \(m = M(\epsilon) \) (as well as for a range of larger values), \(g_m(\epsilon) \leq 0 \) whence \(P_m(x) \in \mathbb{S}^+ \), \(m = M(\epsilon) \).

A trinomial of this form was constructed in the sufficiency proof of Theorem 1 of [2] but the preceding gives the nonvanishing coefficients as explicit functions of \(\epsilon \) and at the same time specifies the coefficients of \((x^2 - x + \epsilon)^{-1} P_m(x) \).

REFERENCES

Purdue University